• Döküm qəlibi tel0086-750-5616188
  • 13392089688+86 13392089688
  • sales@zhongmei-tech.comsales@zhongmei-tech.com

Döküm qəlibi

Magnesium alloys are well-known for being the lightest structural alloys [1].

They are made of magnesium, the lightest structural metal, mixed with other metal elements to improve the physical properties. These elements include manganese, aluminium, zinc, silicon, copper, zirconium, and rare-earth metals [2].

Some of magnesium’s favourable properties include low specific gravity and a high strength-to-weight ratio. As a result, the material lends itself to a range of automotive, aerospace, industrial, electronic, biomedical, and commercial applications

Properties and advantages advantages   Applications

Magnesium alloys cover a wide array of applications, from automotive and aerospace applications to electronic and biomedical uses.

Structural applications Automotive, aerospace, industrial, and commercial applications are examples of structural applications. The advantage of magnesium alloys to be used in such applications is their light weight, high strength-to-weight ratio, high stiffness-to-weight ratio, castability, machinability, and great damping [4].

Avtomobil: support brackets for brakes and clutch, housing for transmission

Aerospace: landing wheels, helicopter rotor fittings, gearbox housings

Industrial: high-speed operating machinery, such as textile machines

Commercial: luggage, hand tools, computer housings, ladders

Electronic applications Electronic applications include electronic packaging, hard drive arms, cell phone and portable media device housings. Magnesium alloys are being used instead of plastics due to their light weight, strength and durability. They also are relatively better for heat dissipation and protection against electromagnetic and radio frequency interference [5].

Medical applications Portable medical equipment and wheelchairs that require light material make good use of magnesium alloys. Also, cardiovascular stents and orthopaedic devices are potential applications of some magnesium alloys due to magnesium’s biocompatibility and bioabsorbability [4].

Döküm qəlibi

Pressure die casting is great for manufacturing higher volumes of metal parts in aluminium, zinc or magnesium. zhongmei-tech manufactures high quality die cast tools, offer precision die casting and post process machining and finishing options.

 

How It Works – Similar to injection molding but for metals, a mold tool is first manufactured by zhongmei-tech’s highly skilled toolmakers and engineers. This is then installed on a die casting press and molten metal is injected under pressure into the tool cavity. The parts can then be finished in a range of ways including powder coating and anodizing.

 

Hot Chamber Die Casting
Also known as gooseneck casting, hot chamber is the most popular die casting process. A chamber of the injection mechanism is immersed in molten metal and a “gooseneck” metal feed system brings the metal into the die cavity.

Cold Chamber Die Casting
Cold chamber die casting is often used to minimize machine corrosion. The molten metal is ladled into the injection system directly, eliminating the need for the injection mechanism to be immersed in the molten metal.

Magnesium alloys, as the lightest structural alloys having a density about one-fourth that of steels, offer significant potential for improving energy efficiency of various transportation systems such as automobiles1,2. Numerous R&D efforts in the last decade have led to the development of various types of magnesium alloys having good combination of strength and ductility3,4 and excellent corrosion resistance5. Although there are many variants of magnesium alloys showing large ductility, however, they usually show poor formability at room temperature3, hindering their widespread applications in automobiles. Poor formability of magnesium alloys arises from several factors; development of strong basal texture during rolling (thermomechanical treatment) and limited number of available deformation modes due to magnesium having hexagonal close-packed (hcp) structure6. Although Mg alloys are readily formable at warm or high temperatures despite their poor formability at room temperature, forming at warm or high temperatures is quite energy intensive and inefficient. Therefore, to make Mg alloys attractive for applications in automobiles, their formability at room temperature should be improved. There have been numerous attempts to improve formability of magnesium alloys and it has been shown that the formability of Mg alloys can be improved by texture randomization/weakening from the typical strong basal texture of conventional Mg alloys, which is usually achieved by the modification of thermomechanical processing7,8 and the addition of rare earth elements (REEs)9,10,11. The randomized/weakened basal texture of REE-containing alloys is certainly beneficial for formability, but also results in low strength. Such inverse relationship between formability and strength is also applicable to other non-REE containing Mg alloys3. Figure 1 shows the Index Erichsen (IE) value (which is an indication of stretch formability; see Methods) as a function of yield strength of various Mg alloys3,8,12,13,14,15,16. As shown in Fig. 1, yield strength of Mg alloys having the IE values larger than 8 mm is lower than ~160 MPa. However, as yield strength of Mg alloys increases to 200 MPa, their IE values become lower than 6 mm, making them non-formable at room temperature. It is apparent that the conventional approaches that improve formability have adverse effects on strength or vice versa. Therefore, new alloy design and processing concepts should be utilized to develop high strength Mg alloys with good formability at room temperature.

Die casting mold Products
Döküm Xidmətləri

Latest Die casting mold News

  • Fabricate Efficient and Durable Aluminum Casting Parts for Your Precise Industrial Needs
    2023-6-13
    Fabricate Efficient and Durable Aluminum Casting Parts for Your Precise Industrial Needs

    Efficient and durable aluminum casting parts are essential for many industries, including automotive, aerospace, and construction. These parts need to withstand high temperatures, pressures, and stresses, while also being lightweight and cost-effective.   To fabricate such parts, manufacturers use advanced techniques and materials that ensure high quality and performance. In this article, we will explore the processes and benefits of aluminum casting, as well as its applications in different industries.   Aluminum casting is a manufacturing process that involves pouring molten aluminum into a mold, which then cools and solidifies to form a specific shape. There are two main methods...

    daha ətraflı >>
  • Creating the Perfect Die Casting Mold
    2023-5-13
    Creating the Perfect Die Casting Mold

    Die casting is a manufacturing process in which molten metal is forced under high pressure into a mold cavity. The molten metal then solidifies, forming the desired shape. The process is used to produce a wide range of parts and components, from small and intricate to large and complex. The quality of the die casting mold is critical to the success of the process. Here are some tips for creating the perfect die casting mold.   1. Choose the Right Material   The material used to make the die casting mold will affect its quality and durability. The most common...

    daha ətraflı >>
  • Diving into the World of Die Casting: A Comprehensive Guide
    2023-7-5
    Diving into the World of Die Casting: A Comprehensive Guide

    Introduction Die casting is a popular manufacturing process that involves the production of metal parts by forcing molten metal into a mold cavity. This comprehensive guide will explore the various aspects of die casting, including its history, materials used, the die casting process, advantages, and applications.   History of Die Casting Die casting has a long history dating back to at least 1838 when the first patent for a basic die casting process was granted. Over the years, advancements in technology and materials have improved the die casting process, making it one of the most widely used manufacturing techniques today....

    daha ətraflı >>
  • China Aluminum Machining wholesale: A Guide to Precision Manufacturing
    2023-8-2
    China Aluminum Machining wholesale: A Guide to Precision Manufacturing

    Introduction Aluminum is a versatile and widely used metal in various industries due to its lightweight, corrosion resistance, and excellent thermal conductivity properties. As a result, precision machining of aluminum has become a crucial process in the manufacturing industry. This guide aims to provide an overview of aluminum machining, including its importance, techniques, challenges, and applications.   Importance of Aluminum Machining Aluminum machining plays a vital role in producing high-quality components and products. The precision manufacturing process ensures the accurate fabrication of complex parts with tight tolerances. From aerospace to automotive, electronics to construction, aluminum machining is at the forefront...

    daha ətraflı >>
  • Bringing Precision and Durability to Your Industry with Die Casting Products
    2023-6-30
    Bringing Precision and Durability to Your Industry with Die Casting Products

    Introduction   Die casting is a manufacturing process that has revolutionized various industries by providing precision and durability in the production of complex metal parts. This article aims to shed light on the importance of die casting products in different sectors, highlighting their benefits and applications.   What is Die Casting?   Die casting is a metal casting process that involves injecting molten metal into a mold, also known as a die, under high pressure. The metal solidifies quickly, taking the shape of the mold, and is then ejected to produce the desired component. This process allows for the mass...

    daha ətraflı >>
  • Aluminum Casting Molds: Crafting Quality and Precision
    2023-7-6
    Aluminum Casting Molds: Crafting Quality and Precision

    Introduction: Aluminum casting molds play a crucial role in the manufacturing industry, enabling the production of high-quality and precise aluminum parts and products. These molds are meticulously crafted to ensure that the final output meets the desired specifications and standards. In this article, we will delve into the process of aluminum casting, the importance of quality molds, and the techniques used to achieve precision in mold making.   The Aluminum Casting Process: Aluminum casting is a widely used manufacturing process that involves pouring molten aluminum into a mold cavity to create a desired shape. This process offers numerous advantages such...

    daha ətraflı >>