• Kalup za tlačno livenje tel0086-750-5616188
  • 13392089688+86 13392089688
  • sales@zhongmei-tech.comsales@zhongmei-tech.com
nbanner
Company News
 

Die Casting Design Guidelines: Ensuring Optimal Design for Manufacturing

    Date: 2023-8-17 Author:admin  

Introduction:

Die casting is a widely used manufacturing process for producing metal parts with high dimensional accuracy and excellent surface finish. However, to achieve optimal results, it is essential to consider several design guidelines during the die casting process. This article aims to highlight the critical factors that designers should keep in mind to ensure the manufacturing efficiency and success of die casting.

 

1. Material Selection:

Choosing the right material is crucial in die casting design. Aluminum, zinc, and magnesium are commonly used due to their excellent castability, mechanical properties, and cost-effectiveness. Understanding the material’s behavior during the die casting process is necessary to determine its suitability for the intended application.

 

2. Draft Angles:

Including draft angles in the design is essential to facilitate the removal of the die-cast part from the mold. Draft angles ensure a smooth ejection without causing any damage to the part or the mold. Generally, a minimum draft angle of 1 to 2 degrees per side is recommended, depending on the part’s complexity.

 

3. Wall Thickness:

Maintaining uniform wall thickness is critical to avoid issues such as shrinkage, porosity, and warpage. Thick sections require longer solidification times and can result in defects. Conversely, thin sections may solidify too quickly, leading to insufficient filling and compromised part integrity. Designers should aim for consistent wall thickness, typically between 2mm to 6mm, to achieve optimal die casting results.

 

4. Fillets and Ribs:

Incorporating fillets and ribs in the design can enhance the part’s structural integrity and reduce stress concentration. Fillets should be designed with a minimum radius equal to or greater than the wall thickness to prevent stress concentration. Ribs, on the other hand, can provide additional strength while minimizing material usage, thus reducing costs.

 

5. Undercuts and Cores:

To avoid complex and costly secondary machining operations, it is advisable to limit the number of undercuts in the die casting design. Undercuts make it challenging to remove the part from the mold and may require additional slides or cores. Minimizing undercuts simplifies the design and improves the overall manufacturing efficiency.

 

6. Gate and Runner Design:

The gate and runner system plays a crucial role in ensuring proper flow of molten metal into the mold cavity. The design should allow for a smooth and uniform filling to minimize turbulence, gas entrapment, and porosity. A well-designed gate and runner system also promotes optimal cooling and helps prevent premature solidification of the molten metal.

 

 

 

 

7. Parting Line Placement:

The parting line separates the two halves of the mold and determines the location where the two halves meet. Optimal parting line placement is vital to minimize the appearance of parting line flash, which is excess material observed along the parting line. Proper parting line placement also ensures consistent wall thickness and avoids critical features falling on the parting line.

 

Conclusion:

Die casting design guidelines are essential to ensure the successful and efficient manufacturing of high-quality metal parts. By considering parameters such as material selection, draft angles, wall thickness, fillets, and ribs, designers can optimize the die casting process. Additionally, careful consideration of undercuts, gate and runner design, and parting line placement can further enhance manufacturing efficiency and reduce costs. Adhering to these guidelines will result in products with superior quality, dimensional accuracy, and surface finish, meeting the desired specifications and customer expectations.

Najnovije vijesti
Is Creating an Aluminum Prototype a Step Towards Innovation?
Is Creating an Aluminum Prototype a Step Towards Innovation?
Introduction In today's fast-paced world, innovation is the key to success. Companies around the world are constantly striving to develop new and improved products that can capture the market and meet the ever-changing needs of consumers. One crucial step in the innovation process is creating a prototype, which allows designers...
Die Castings factor: The Process, Uses, and Advantages
Die Castings factor: The Process, Uses, and Advantages
Die castings are a manufacturing process that involves forcing molten metal into a mold cavity under high pressure. This process is widely used in the production of complex parts with high accuracy and dimensional stability. In this article, we will discuss the process, uses, and advantages of die castings.  ...
China Cast Aluminum vs. Aluminum: A Comparative Analysis
China Cast Aluminum vs. Aluminum: A Comparative Analysis
Aluminum is a widely used metal in various industries due to its unique properties and versatility. It offers a combination of strength, lightweight, and corrosion resistance, making it an ideal choice for many applications. However, there are different types of aluminum available, including cast aluminum and pure aluminum, each with...
Creating High-Quality Die Casting Molds for Precision Manufacturing Processes
Creating High-Quality Die Casting Molds for Precision Manuf…
Die casting is a manufacturing process that involves injecting molten metal into a mold to form a complex shape. This process is widely used in the production of parts for various industries, including automotive, aerospace, and consumer products. The quality of the die casting mold is critical to the success...
CNC plastic machining: Creating a High-Quality Die Casting Mold
CNC plastic machining: Creating a High-Quality Die Casting …
Creating a high-quality die casting mold is essential for producing complex and accurate parts for various industries. The process of designing and manufacturing a mold requires attention to detail, precision, and expertise in the field of die casting. In this article, we will discuss the steps involved in creating a...
Casting Magnesium: Understanding the Process and Applications
Casting Magnesium: Understanding the Process and Applicatio…
Magnesium casting is a process that involves pouring molten magnesium into a mold to create various shapes and forms. This technique has gained significant popularity in recent years due to the unique properties of magnesium, making it ideal for a wide range of applications across different industries. In this article,...
The Importance of Coat in Pressure Die Casting
The Importance of Coat in Pressure Die Casting
Pressure die casting is a manufacturing process used to produce high precision metal parts. It involves pouring molten metal into a mold under high pressure and then allowing it to solidify. The quality of the casting is dependent on several factors including the quality of the mold, the temperature of...
Prednosti livenja pod pritiskom
Prednosti livenja pod pritiskom
Die casting is a manufacturing process where molten metal is forced into a mold cavity under high pressure. This process is widely used to manufacture various metal components like automotive parts, aerospace parts, and household appliances. In this article, we will discuss the advantages of die casting.   1. High...