• Kalup za tlačno livenje tel0086-750-5616188
  • 13392089688+86 13392089688
  • sales@zhongmei-tech.comsales@zhongmei-tech.com
nbanner
Company News
 

Die Casting Design Guidelines: Essential Tips for Successful Manufacturing

    Date: 2023-7-1 Author:admin  

Die casting is a manufacturing process used to produce metal parts by forcing molten metal into a mold cavity under high pressure. It is commonly used for the production of complex and intricate parts with high accuracy and surface finish. To ensure successful die casting manufacturing, it is crucial to follow certain design guidelines. In this article, we will discuss some essential tips for die casting design.

 

1. Part Design Considerations:

When designing a part for die casting, it is important to consider certain factors to optimize the manufacturing process. First, the part should have uniform wall thickness to ensure proper flow of molten metal and avoid defects like porosity. Sharp corners and edges should be avoided as they can result in stress concentration and increase the likelihood of cracks. Additionally, the part should have proper draft angles to facilitate easy ejection from the mold.

 

2. Gate Design:

The gate is the channel through which molten metal enters the mold cavity. It is essential to design the gate properly for successful die casting. The gate should be placed in a location that allows for even flow of metal throughout the cavity. It should also be designed with an appropriate size to prevent premature solidification of the metal. A well-designed gate ensures uniform filling of the mold and minimizes the formation of defects like cold shuts.

 

3. Wall Thickness:

Maintaining a consistent wall thickness is critical for die casting. Varying wall thickness can lead to uneven cooling and result in defects like warpage and porosity. It is recommended to keep the wall thickness between 2 to 5 mm for aluminum parts and 3 to 7 mm for zinc parts. Thicker sections should be properly reinforced to prevent distortion during solidification.

 

4. Ribs and Bosses:

Ribs are used to provide additional strength and rigidity to the part, while bosses are used for mounting or joining purposes. When designing ribs and bosses, it is important to maintain a proper thickness to avoid shrinkage and sink marks. Ribs should have a thickness of 60 to 70% of the adjacent wall thickness, and bosses should be designed with a thickness of at least 60% of the wall thickness.

 

5. Fillets and Radii:

Sharp corners and edges should be avoided in die casting design. Instead, fillets and radii should be incorporated to distribute stress evenly and reduce the risk of cracks. The minimum fillet radius should be 1 mm for aluminum parts and 1.5 mm for zinc parts. Large fillet radii should be used at the intersection of walls to prevent stress concentration.

 

6. Draft Angles:

Draft angles are essential for easy ejection of the part from the mold. The recommended draft angle for die casting is 1 to 3 degrees per side, depending on the part geometry and material. Insufficient draft can result in sticking of the part in the mold, while excessive draft can cause flash and dimensional inaccuracies.

 

 

7. Surface Finish:

Die casting can produce parts with excellent surface finish. However, it is important to consider the surface finish requirements during the design phase. If a specific surface finish is required, additional machining or polishing operations may be needed. It is also important to avoid texture or patterns in areas where metal flow is critical to prevent defects like flow lines.

 

In conclusion, successful die casting manufacturing relies on proper design considerations. By following the guidelines mentioned above, designers can optimize the die casting process and ensure the production of high-quality parts. Consistent wall thickness, proper gate design, and the use of fillets and radii are some of the key factors to focus on. By paying attention to these essential tips, manufacturers can achieve efficient and cost-effective die casting operations.

Najnovije vijesti
Exploring the Benefits and Techniques of Aluminum Conversion Coating
Exploring the Benefits and Techniques of Aluminum Conversio…
  Introduction: Aluminum is a widely used metal in various industries due to its lightweight, corrosion resistance, and high strength-to-weight ratio. However, aluminum surfaces are susceptible to oxidation and corrosion, which can compromise their performance and longevity. To enhance the durability and protection of aluminum surfaces, a process called aluminum...
Efficient Aluminum Casting Machine for High-Quality Production
Efficient Aluminum Casting Machine for High-Quality Product…
Aluminum casting is a widely used process in the manufacturing industry. It involves the melting of aluminum alloys and pouring the molten metal into a mold to create a desired shape. The process requires careful monitoring and precision to ensure the desired quality and strength of the final product. Therefore,...
Exploring the Importance of Prototype Manufacturing in the Product Development Process
Exploring the Importance of Prototype Manufacturing in the …
Prototype manufacturing plays a crucial role in the product development process. It involves the creation of a working model of a product to test and validate its functionality, design, and performance, before it is launched into the market. This article explores the importance of prototype manufacturing in the product development...
Accelerating Product Development: Exploring Rapid Prototyping Services
Accelerating Product Development: Exploring Rapid Prototypi…
In today's fast-paced business environment, companies are constantly seeking ways to accelerate their product development processes. One method that has gained significant popularity is the use of rapid prototyping services. Rapid prototyping allows companies to quickly create physical models of their products, enabling them to test and refine their designs...
Discover the Versatility of Aluminum Casting Parts
Discover the Versatility of Aluminum Casting Parts
Aluminum casting parts have become an essential element in various industries due to their exceptional properties and versatility. From aerospace to automotive, and from construction to electronics, aluminum casting parts are widely used in manufacturing processes. In this article, we will explore the versatility of aluminum casting parts and how...
Creating a Die Casting Mold: A Comprehensive Guide
Creating a Die Casting Mold: A Comprehensive Guide
Die casting is a process used to create metal parts by injecting molten metal into a mold under high pressure. This process is commonly used in manufacturing industries to produce complex and precise parts. The quality of the final product depends on the quality of the die casting mold used....
What does CNC stand for in English?
What does CNC stand for in English?
CNC stands for Computer Numerical Control, a technology that has revolutionized the manufacturing industry. It is a computerized system that controls machinery and tools to create precision parts and components used in various applications. CNC machines have replaced traditional manual machines and have improved the accuracy, efficiency, and speed of...
Magnesium Thixomolding: The Next Generation of Lightweight and Durable Manufacturing
Magnesium Thixomolding: The Next Generation of Lightweight …
Magnesium thixomolding is an innovative manufacturing technique that has gained a lot of attention in recent years due to its numerous advantages. It involves the use of magnesium alloys to produce lightweight, high-strength, and corrosion-resistant parts and components.   Magnesium alloys have been known for their unique properties, such as...