• 다이캐스팅 금형 전화0086-750-5616188
  • 13392089688+86 13392089688
  • sales@zhongmei-tech.comsales@zhongmei-tech.com
nbanner
회사 뉴스
 

Designing for Success: A Comprehensive Guide to Die Casting Design

    Date: 2023-7-15 Author:admin  

Introduction:

Die casting is a widely used manufacturing process that involves injecting molten metal into a mold cavity under high pressure. It is known for its ability to produce complex and precise parts with excellent dimensional accuracy and surface finish. However, to ensure successful die casting production, it is important to design the part and mold properly. In this comprehensive guide, we will explore the key considerations and best practices in die casting design.

 

1. Material Selection:

The choice of material is critical in die casting design. Aluminum, zinc, and magnesium are commonly used metals due to their excellent castability, tensile strength, and heat dissipation properties. Factors like part functionality, required mechanical properties, and cost should be considered when selecting the material.

 

2. Part Design:

Designing the part for die casting involves several considerations:

 

a. Wall Thickness: Maintaining uniform wall thickness is crucial to ensure proper filling of molten metal and prevent defects like shrinkage, porosity, and warpage. The recommended range for wall thickness is typically 1-5mm, depending on the part size and geometry.

 

b. Draft Angles: Incorporating draft angles (taper) on vertical surfaces facilitates easy ejection of the part from the mold. A draft angle of 1-3 degrees per side is generally recommended.

 

c. Ribs and Bosses: Reinforcing ribs and bosses can enhance the strength and rigidity of the part without significantly increasing weight. It is important to maintain proper thickness ratios and fillets to avoid stress concentration and shrinkage defects.

 

d. Fillets and Radii: Incorporating fillets and radii at corners reduces stress concentration and improves the flow of molten metal during casting. A minimum fillet radius of 0.5-1mm is recommended.

 

e. Undercuts and Side Actions: Minimizing undercuts and side actions simplifies the mold design and reduces production costs. However, if undercuts are unavoidable, slides or collapsible cores can be incorporated.

 

3. Gate Design:

The gate is the entry point for molten metal into the mold cavity. Proper gate design is essential for ensuring smooth and uniform filling of the part. Factors like gate location, size, and shape should be taken into account.

 

a. Gate Location: Placing the gate at the thickest section of the part helps to minimize defects like porosity and cold shuts. It is also important to consider the direction of material flow to avoid undesirable turbulence.

 

b. Gate Size and Shape: The gate size and shape should be carefully designed to achieve optimal flow and prevent premature solidification. A gate cross-sectional area of 50-70% of the thinnest section of the part is generally recommended.

 

4. Mold Design:

The mold plays a crucial role in die casting. It should be designed to facilitate proper filling of molten metal, efficient cooling, and easy ejection of the part. Key considerations in mold design include:

 

a. Parting Line: Determining the parting line where the mold separates is important for proper ejection and minimal flash formation.

 

b. Cooling System: Strategically placed cooling channels help dissipate heat and solidify the part properly, reducing cycle time and improving dimensional stability.

 

 

c. Venting: Adequate venting ensures the escape of gases during metal injection, preventing defects like gas porosity and incomplete casting fill.

 

d. Ejector Pins: Properly positioned ejector pins are crucial for easy and efficient ejection of the part from the mold.

 

Conclusion:

Designing for success in die casting requires careful consideration of material selection, part design, gate design, and mold design. By following the best practices outlined in this comprehensive guide, manufacturers can ensure the production of high-quality die-cast parts with minimal defects and optimal performance.

최근 소식
High-Quality Aluminum Casting Parts for Various Industrial Applications
High-Quality Aluminum Casting Parts for Various Industrial …
Aluminum casting is a widely used manufacturing process in various industries due to its versatility, cost-effectiveness, and superior quality. This process involves pouring molten aluminum into a mold to create complex shapes and designs. The resulting aluminum casting parts find applications in a wide range of industries, including automotive, aerospace,...
Machining Large Parts: Handling the Challenges of Size and Precision
Machining Large Parts: Handling the Challenges of Size and …
Machining large parts can pose a significant challenge for manufacturers, as it requires precision and attention to detail while dealing with the size of the part at hand. The process requires a skilled machinist, specialized equipment, and a thorough understanding of the properties of the materials being used.   One...
Custom metal parts macbook middle board tailor-made exclusive accessories for notebooks
Custom metal parts macbook middle board tailor-made exclusi…
With the continuous improvement of people's living standards, many things that were previously out of reach have slowly been integrated into life. For example, our laptops. At the beginning, people thought that computers were high-tech products, but now almost everyone has their own laptop. In portable notebook computers, the mid-board...
Aluminum Alloy Die Casting: A Guide to the Process and Benefits
Aluminum Alloy Die Casting: A Guide to the Process and Bene…
Introduction:   Aluminum alloy die casting is a manufacturing process that allows manufacturers to produce complex, high-quality metal parts with incredible precision and accuracy. The process involves injecting molten aluminum alloy into a steel mold, which is then cooled and opened to reveal a finished part. This guide provides an...
Creating High-Quality Die Casting Molds: Tips and Techniques
Creating High-Quality Die Casting Molds: Tips and Techniques
Creating high-quality die casting molds is essential for the success of any die casting project. A well-designed mold can improve the overall efficiency of the manufacturing process, reduce the production time, and lower the cost of production. However, creating high-quality die casting molds can be a complex and time-consuming process...
Magnesium Casting: Revolutionizing the Manufacturing Industry
Magnesium Casting: Revolutionizing the Manufacturing Indust…
The manufacturing industry has always been at the forefront of innovation and technological advancements. One such innovation that is revolutionizing the industry is magnesium casting. Magnesium casting is a process that involves the production of intricate and complex parts using magnesium alloys. This process offers numerous advantages over traditional manufacturing...
Magnesium Die Casting: The Benefits and Applications
Magnesium Die Casting: The Benefits and Applications
Magnesium is a light metal with excellent mechanical properties. It has high strength-to-weight ratio, good thermal conductivity, and is easily machinable, making it an ideal choice for high-performance applications. The process of magnesium die casting involves injecting molten magnesium under high pressure into a steel mold to create a part...
China CNC Machining Aluminum Parts: Enhancing Precision and Efficiency
China CNC Machining Aluminum Parts: Enhancing Precision and…
Introduction CNC (Computer Numerical Control) machining has revolutionized the manufacturing industry by providing enhanced precision, efficiency, and cost-effectiveness. This article will delve into the specific advantages of CNC machining when applied to aluminum parts manufacturing.   1. Precision and Accuracy CNC machining is known for its exceptional precision and accuracy...