• 다이캐스팅 금형 전화0086-750-5616188
  • 13392089688+86 13392089688
  • sales@zhongmei-tech.comsales@zhongmei-tech.com
nbanner
회사 뉴스
 

Die Casting Design Guidelines: Enhancing Efficiency and Quality

    Date: 2023-7-6 Author:admin  

Die Casting Design Guidelines: Enhancing Efficiency and Quality

Introduction:

Die casting is a popular manufacturing process used to produce complex metal parts with high precision and excellent surface finish. It involves injecting molten metal into a mold, which is then cooled and solidified to form the desired shape. To ensure the success of the die casting process, it is crucial to follow specific design guidelines that enhance efficiency and quality. This article will discuss some essential guidelines to consider when designing for die casting.

1. Draft angles:

Including appropriate draft angles is essential for easy ejection of the part from the die mold. Draft angles are tapered surfaces that allow the part to be smoothly released from the mold without causing any damage. Typically, a minimum draft angle of 1 to 3 degrees is recommended, depending on the complexity of the part. Insufficient draft angles can result in sticking or dragging of the part, leading to defective castings.

2. Wall thickness:

Maintaining uniform wall thickness is crucial to achieve optimal die casting results. Uneven wall thickness can cause variations in cooling rates, resulting in defects such as porosity and shrinkage. It is advisable to keep the wall thickness between 2 to 5 mm to ensure proper filling and solidification of the molten metal. Additionally, avoiding abrupt changes in wall thickness helps to prevent stress concentration and warping.

3. Fillets and radii:

Sharp corners and edges should be avoided as they can lead to stress concentration, turbulence, and increased chances of defects. Incorporating fillets and radii in the design helps to distribute stress, improve flow, and eliminate potential weak points. Ideally, fillets should have a minimum radius of 1mm, while larger radii are recommended for thicker sections or high-stress areas.

4. Undercuts and parting lines:

Designing parts with undercuts and complex geometries can significantly increase manufacturing costs and make the die casting process challenging. To simplify the process and reduce the likelihood of defects, it is advisable to minimize undercuts and align the parting lines with the mold\’s open/close direction. This allows for easier mold release and reduces the need for additional machining.

5. Ribs and bosses:

Ribs and bosses are commonly used to increase the structural integrity and strength of die cast parts. Rib thickness should be kept around 60-80% of the adjoining wall thickness to avoid sink marks and ensure proper cooling. Bosses, which are used for attaching screws or other components, should have sufficient draft angles to facilitate easy insertion and removal.

6. Gating and venting:

Proper gating and venting are critical for achieving defect-free die castings. Gating refers to the system used to introduce molten metal into the mold cavity, while venting ensures the escape of air and gases during the filling process. The design should include appropriately sized gates and vents to promote smooth flow, minimize turbulence, and prevent the entrapment of air or gases, which can lead to porosity or incomplete filling.

7. Material selection:

Choosing the right material for die casting is essential for ensuring the desired mechanical properties and surface finish of the final part. Aluminum, zinc, and magnesium alloys are commonly used due to their excellent castability and mechanical properties. The material selection should consider factors such as strength requirements, corrosion resistance, thermal conductivity, and cost.

Conclusion:

Designing for die casting requires careful consideration of various factors to enhance efficiency and quality. By implementing the guidelines discussed in this article, manufacturers can minimize defects, reduce production costs, and achieve high-quality castings. Attention to draft angles, wall thickness, fillets, and other design aspects can significantly improve the success rate of the die casting process. Additionally, proper gating, venting, and material selection contribute to the overall efficiency and performance of die cast parts.

최근 소식
Die Casting Design Guidelines: Ensuring Optimal Design for Manufacturing
Die Casting Design Guidelines: Ensuring Optimal Design for …
Introduction: Die casting is a widely used manufacturing process for producing metal parts with high dimensional accuracy and excellent surface finish. However, to achieve optimal results, it is essential to consider several design guidelines during the die casting process. This article aims to highlight the critical factors that designers should...
How to Polish Cast Aluminum: A Guide for Shiny and Durable Results
How to Polish Cast Aluminum: A Guide for Shiny and Durable …
Polishing cast aluminum is a great way to give your metal surfaces a shiny and durable finish. Whether you are restoring an old car or just looking to spruce up your aluminum cookware, this guide will provide you with all the information you need to get the job done right....
China Aluminum Machining wholesale: A Guide to Precision Manufacturing
China Aluminum Machining wholesale: A Guide to Precision Ma…
Introduction Aluminum is a versatile and widely used metal in various industries due to its lightweight, corrosion resistance, and excellent thermal conductivity properties. As a result, precision machining of aluminum has become a crucial process in the manufacturing industry. This guide aims to provide an overview of aluminum machining, including...
Magnesium Casting: The Lightweight Solution for Enhanced Performance
Magnesium Casting: The Lightweight Solution for Enhanced Pe…
Introduction   In the modern world, where technology is constantly advancing and industries are striving for better performance, finding lightweight solutions has become crucial. Magnesium casting has emerged as a game-changer in various sectors due to its exceptional properties and advantages over conventional materials. With its low density, high specific...
Prototype Manufacturing: Innovating Ideas into Tangible Reality
Prototype Manufacturing: Innovating Ideas into Tangible Rea…
Introduction: In today's fast-paced and competitive world, innovation and creativity are key factors that drive the success of any business or industry. The ability to transform abstract ideas into tangible reality is what separates visionary companies from the rest. Prototype manufacturing plays a crucial role in this process by bridging...
What Does CNC Mean in English?
What Does CNC Mean in English?
CNC stands for Computer Numerical Control, and it refers to a computerized system used to control machine tools. This technology has revolutionized manufacturing processes by automating and increasing precision in various industries such as automotive, aerospace, and electronics.   In the early days of machining, operators manually controlled machine tools...
How about magnesium alloy die-casting thixotropic helmets
How about magnesium alloy die-casting thixotropic helmets
A helmet is a tool to protect the head. From 2020, the traffic law stipulates that riding a motorcycle without a helmet will be punished. Usually, people resist wearing helmets because they are heavy. Manufacturers are now applying magnesium alloys to make helmets lighter. The magnesium alloy die-casting thixotropic helmet...
Aluminum Conversion Coating: Enhancing Durability and Corrosion Resistance
Aluminum Conversion Coating: Enhancing Durability and Corro…
Aluminum is a widely used material in various industries due to its unique properties such as light weight, high strength, and good thermal and electrical conductivity. However, aluminum is also susceptible to corrosion, which can reduce its lifespan and performance. To enhance aluminum\'s durability and corrosion resistance, aluminum conversion coating...