• 다이캐스팅 금형 전화0086-750-5616188
  • 13392089688+86 13392089688
  • sales@zhongmei-tech.comsales@zhongmei-tech.com
nbanner
회사 뉴스
 

Die Casting Design Guidelines: Essential Tips for Successful Manufacturing

    Date: 2023-7-1 Author:admin  

Die casting is a manufacturing process used to produce metal parts by forcing molten metal into a mold cavity under high pressure. It is commonly used for the production of complex and intricate parts with high accuracy and surface finish. To ensure successful die casting manufacturing, it is crucial to follow certain design guidelines. In this article, we will discuss some essential tips for die casting design.

 

1. Part Design Considerations:

When designing a part for die casting, it is important to consider certain factors to optimize the manufacturing process. First, the part should have uniform wall thickness to ensure proper flow of molten metal and avoid defects like porosity. Sharp corners and edges should be avoided as they can result in stress concentration and increase the likelihood of cracks. Additionally, the part should have proper draft angles to facilitate easy ejection from the mold.

 

2. Gate Design:

The gate is the channel through which molten metal enters the mold cavity. It is essential to design the gate properly for successful die casting. The gate should be placed in a location that allows for even flow of metal throughout the cavity. It should also be designed with an appropriate size to prevent premature solidification of the metal. A well-designed gate ensures uniform filling of the mold and minimizes the formation of defects like cold shuts.

 

3. Wall Thickness:

Maintaining a consistent wall thickness is critical for die casting. Varying wall thickness can lead to uneven cooling and result in defects like warpage and porosity. It is recommended to keep the wall thickness between 2 to 5 mm for aluminum parts and 3 to 7 mm for zinc parts. Thicker sections should be properly reinforced to prevent distortion during solidification.

 

4. Ribs and Bosses:

Ribs are used to provide additional strength and rigidity to the part, while bosses are used for mounting or joining purposes. When designing ribs and bosses, it is important to maintain a proper thickness to avoid shrinkage and sink marks. Ribs should have a thickness of 60 to 70% of the adjacent wall thickness, and bosses should be designed with a thickness of at least 60% of the wall thickness.

 

5. Fillets and Radii:

Sharp corners and edges should be avoided in die casting design. Instead, fillets and radii should be incorporated to distribute stress evenly and reduce the risk of cracks. The minimum fillet radius should be 1 mm for aluminum parts and 1.5 mm for zinc parts. Large fillet radii should be used at the intersection of walls to prevent stress concentration.

 

6. Draft Angles:

Draft angles are essential for easy ejection of the part from the mold. The recommended draft angle for die casting is 1 to 3 degrees per side, depending on the part geometry and material. Insufficient draft can result in sticking of the part in the mold, while excessive draft can cause flash and dimensional inaccuracies.

 

 

7. Surface Finish:

Die casting can produce parts with excellent surface finish. However, it is important to consider the surface finish requirements during the design phase. If a specific surface finish is required, additional machining or polishing operations may be needed. It is also important to avoid texture or patterns in areas where metal flow is critical to prevent defects like flow lines.

 

In conclusion, successful die casting manufacturing relies on proper design considerations. By following the guidelines mentioned above, designers can optimize the die casting process and ensure the production of high-quality parts. Consistent wall thickness, proper gate design, and the use of fillets and radii are some of the key factors to focus on. By paying attention to these essential tips, manufacturers can achieve efficient and cost-effective die casting operations.

최근 소식
Magnesium Casting: Revolutionizing Manufacturing with Lightweight Solutions
Magnesium Casting: Revolutionizing Manufacturing with Light…
Introduction In recent years, there has been a growing demand for lightweight materials in various industries, ranging from aerospace to automotive. Magnesium, with its exceptional strength-to-weight ratio and excellent castability, has emerged as a game-changer in the manufacturing sector. This article will explore how magnesium casting is revolutionizing the industry...
Cheap Magnesium Die Casting: A Lightweight Solution for Precision Engineering
Cheap Magnesium Die Casting: A Lightweight Solution for Pre…
Introduction: In the world of precision engineering, the quest for lightweight materials without compromising on strength is a never-ending endeavor. One such solution that has gained significant attention is magnesium die casting. With its exceptional strength-to-weight ratio and remarkable dimensional stability, magnesium die casting has emerged as a game-changer in...
Cast Aluminum vs. Cast Iron: Which Material Reigns Supreme?
Cast Aluminum vs. Cast Iron: Which Material Reigns Supreme?
Introduction: Cast aluminum and cast iron are two popular materials used in the manufacturing industry due to their unique properties and versatility. While both materials offer excellent durability and heat retention, they have distinct characteristics that make them suitable for different applications. This article aims to compare and contrast cast...
High-Quality Die Casting Products: A Perfect Solution for Industrial Applications
High-Quality Die Casting Products: A Perfect Solution for I…
Introduction   Die casting is a popular manufacturing process used to produce high-quality, complex-shaped metal parts for a wide range of industrial applications. This process involves injecting molten metal into a mold under high pressure, allowing it to solidify and form the desired shape. The resulting die casting products exhibit...
Aluminum Alloy Die Casting: A Comprehensive Overview
Aluminum Alloy Die Casting: A Comprehensive Overview
Aluminum alloy die casting is a widely used manufacturing process in which molten metal is injected into a mold cavity under high pressure. The molten metal solidifies inside the mold cavity and takes the shape of the mold, resulting in a high-quality and accurate component.   The process of aluminum...
Creating a Die Casting Mold: The Key to Efficient Production
Creating a Die Casting Mold: The Key to Efficient Production
Creating a die casting mold is an important step in the manufacturing process, as it is the key to efficient production. Die casting is a process that involves injecting molten metal into a mold, which is then cooled and hardened to create a solid part. This process is used in...
Cast Aluminum vs Extruded Aluminum: Understanding the Differences
Cast Aluminum vs Extruded Aluminum: Understanding the Diffe…
Aluminum is a popular material used in various industries for its durability, lightweight, and corrosion resistance. There are two primary ways to manufacture aluminum: casting and extrusion. While both methods involve melting aluminum, the two processes produce different results. In this article, we will take a closer look at the...
Die Castings price: A Comprehensive Guide to the Manufacturing Process
Die Castings price: A Comprehensive Guide to the Manufactur…
Die castings are an important manufacturing process for producing metal parts with intricate shapes and high precision. This process involves pouring molten metal into a mold cavity, which is then cooled and solidified to form the final product.   The die casting process is commonly used in industries such as...