• Форма для литья под давлением тел.0086-750-5616188
  • 13392089688+86 13392089688
  • sales@zhongmei-tech.comsales@zhongmei-tech.com
nbanner
Industry Information
 

Magnesium is the light-weight champion of all die casting metals

    Date: 2021-8-17 Author:admin  

If your project requires a lightweight die casting component with an excellent strength-to-weight ratio, magnesium die casting is the logical option. Die casts magnesium alloy AZ91D, a high-purity alloy which offers good corrosion resistance for your magnesium parts, as well as the following benefits:

  • Longer tool life
  • Easiest alloy to machine
  • Good thermal and electrical conductivity
  • Excellent for thin-wall, complex parts
  • Excellent noise and vibration dampening properties
  • Provides excellent EMI & RFI shielding
  • Good finishing characteristics
  • Light weight (75% lighter than steel, 33% lighter than aluminum) with high strength
  • Magnesium parts scrap material is 100% recyclable

What is Magnesium?

Magnesium is a base material for numerous alloys. AZ91D is the most common magnesium alloy for die casting. It offers excellent castability and toughness, and is an ideal material for light weight, highly durable parts.

The alloy specification of three major magnesium alloys AM50A, AM60B, and AZ91D.

Why Choose Magnesium for your Die Casting Project?

Compared to steel, magnesium is 75% lighter with no significant loss of strength. It is a far better material for complex, thin-walled, net shape or near-net shape castings and offers greater dimensional stability. Magnesium castings can meet tight tolerances that would be difficult or impossible to achieve with steel. Tooling costs can be lower for magnesium castings, as multiple parts can be easily consolidated into a single component. This also improves component rigidity and reduces welding and assembly costs.

Compared to aluminum, magnesium is 33% lighter, with similar or improved mechanical properties, and machines easier. Magnesium provides greater corrosion resistance, and is better suited to large, thin-wall, net shape complex parts.

Magnesium Die Casting Primary Benefit of Mg Secondary Benefit of Mg
vs. Steel Weldment 75% Lighter Less Expensive
vs. Aluminium Die Casting 33% Lighter Longer Tool Life
vs. Plastic Molding Stronger, stiffer Environmentally Stable

Magnesium is stronger and stiffer than even the most advanced engineered plastics. It also provides greater wear resistance, higher temperature resistance, and better energy absorption/impact resistance characteristics.

The application of Magnesium

The applications for magnesium are wide ranging. Below are some areas we commonly see magnesium metal used in, for more information, please visit the International Magnesium Association (IMA) website.

 

AUTOMOTIVE APPLICATION:

In the 1920s magnesium began to make an appearance in the automotive industry. The lightweight metal was initially used in racing cars to add to their competitive edge. About a decade later, magnesium was widely used in commercial vehicles such as the Volkswagen Beetle, which contained about 20kg (44.09lbs) of the material. The interest in magnesium use for automotive applications has increased over the past ten years in response to increasing environmental and legislative influences. Nowadays, fuel efficiency, increased performance, and sustainability are top-of-mind issues for automotive producers.

The use of magnesium in vehicles can, and does, lower overall weight and improve each of these conditions. Many large automotive companies have already replaced steel and aluminum with magnesium in various parts of their products. Audi, DaimlerChrysler (Mercedes-Benz), Ford, Jaguar, Fiat and Kia Motors Corporation are just a few of these companies. Magnesium is currently being used in gearbox, steering column and driver’s air bag housings as well as in steering wheels, seat frames and fuel tank covers. The majority of magnesium parts are produced through high pressure diecasting.

To see an interactive demonstrator of where magnesium can be found in cars, visit the International Magnesium Associations website.

ALUMINUM APPLICATION:

One of the alloys that aluminum is alloyed with the most is magnesium. Magnesium offers a range of positive effects. This element can increase the strength and hardness of aluminum while also increasing castability. Manufacturers also turn to magnesium when they need to strengthen aluminum without making the alloy significantly denser. Magnesium and aluminum can also experience an increase of weldability as well as corrosion resistance.

The addition of magnesium to 5xxx series aluminum increases strength through solid solution strengthening and improves their strain hardening ability. These alloys are the highest strength nonheat-treatable aluminum alloys and are, therefore, used extensively for structural applications. The 5xxx series alloys are produced mainly as sheet and plate.

The addition of magnesium and silicon to 6xxx series aluminum produces the compound magnesium-silicide (Mg2Si).  The formation of this compound provides the 6xxx series their heat-treatability. The 6xxx series alloys are easily and economically extruded and common applications for the 6xxx series alloys are handrails, drive shafts, automotive frame sections, bicycle frames, tubular lawn furniture, scaffolding, stiffeners and braces used on trucks, boats and many other structural fabrications.

AEROSPACE APPLICATION:

The aerospace industry has a long history of using magnesium in many applications both civil and military. Magnesium is critical to lowering the weight of air and space craft, as well as to aid in decreasing emissions and increasing fuel efficiency. Magnesium is an ideal material for use in these applications due to limited improvements on aluminum weight reduction, the high cost of fibre metal laminates or carbon fibre composites, and the poor impact, and damage properties of low-density plastics when subjected to extreme temperatures. Magnesium can be found in the thrust reversers for the Boeing 737, 747, 757, and 767 as well as in jet engine fan frames, and aircraft and helicopter transmission casings. Recent changes to the Aircraft Seat Design Standard SAE AS8049C now permit the use of magnesium alloys, meeting specific FAA flammability criteria, in passenger aircraft seat frames. Investigations are underway to allow broader use within the cabin. Due to increasing adoption, the aerospace industry is widely seen as the next growth segment for the magnesium market.

Latest News
In 2022, the government will conduct research on China Magnesium and fully affirm the work results
In 2022, the government will conduct research on China Magn…
Local government visited Zhongmei,China magnesium die-casting manufacturer,to conduct research, and fully affirmed our results of work in the lightweight application of magnesium alloy in vehicles industry. On November 3rd, Lin Jiansheng, the deputy mayor of Jiangmen Municipal Government, and his party went to  Zhongmei Technology Company to carry out work research. Taishan City is...
The Role of Quality Control in CNC Machining Parts: Ensuring Accuracy and Precision
The Role of Quality Control in CNC Machining Parts: Ensurin…
CNC machining has revolutionized the manufacturing industry by offering a level of precision, accuracy, and speed that was previously unattainable. CNC (Computer Numerical Control) machines use computer programs to control the movement and operation of machine tools, allowing for the creation of complex parts and components with high levels of...
Cast Iron vs Aluminum: Exploring the Pros and Cons
Cast Iron vs Aluminum: Exploring the Pros and Cons
When it comes to choosing cookware for your kitchen, two popular options that often come to mind are cast iron and aluminum. Both materials have their own set of advantages and disadvantages, and understanding them can help you make an informed decision. In this article, we will delve into the...
Optimizing Die Casting Design for Enhanced Performance and Efficiency
Optimizing Die Casting Design for Enhanced Performance and …
Die casting is a widely used manufacturing process that involves the injection of molten metal into a mold cavity under high pressure. It is known for its ability to produce complex shapes with high accuracy and surface finish. However, the design of the die casting mold plays a crucial role...
Die Casting Mold manufacture: A Crucial Component for Precision Manufacturing
Die Casting Mold manufacture: A Crucial Component for Preci…
Precision manufacturing plays a vital role in various industries, ranging from automotive to aerospace. Achieving precise and accurate components requires advanced techniques and tools, and one of the crucial components in this process is the die casting mold. The die casting mold is an indispensable element in the manufacturing of...
Creating an Aluminum Prototype: A Step towards Innovation
Creating an Aluminum Prototype: A Step towards Innovation
Innovation has always been at the forefront of technological advancements. Every step towards progress requires meticulous planning and execution. One such important step is the creation of an aluminum prototype. Aluminum prototypes play a crucial role in various industries, enabling engineers and designers to test and refine their ideas before...
Die Castings guide: Precision Manufacturing for High-Quality Parts
Die Castings guide: Precision Manufacturing for High-Qualit…
Die castings are a type of precision manufacturing used to create high-quality parts for a variety of industries. The process involves injecting molten metal into a mold cavity, where it solidifies to form the desired shape. This process is ideal for creating complex parts with tight tolerances, and it can...
China Die Casting Mold Design manufacture
China Die Casting Mold Design manufacture
Die casting mold design is a critical stage in the manufacturing of high-quality die castings. The success of the die casting process is highly dependent on the quality of the mold design. A well-designed mold can lead to consistent and accurate castings, while a poorly designed one can lead to...