• แม่พิมพ์หล่อ tel0086-750-5616188
  • 13392089688+86 13392089688
  • sales@zhongmei-tech.comsales@zhongmei-tech.com
nbanner
ข่าวบริษัท
 

Die Casting Design Guidelines: Ensuring Optimal Design for Manufacturing

    Date: 2023-8-17 Author:admin  

Introduction:

Die casting is a widely used manufacturing process for producing metal parts with high dimensional accuracy and excellent surface finish. However, to achieve optimal results, it is essential to consider several design guidelines during the die casting process. This article aims to highlight the critical factors that designers should keep in mind to ensure the manufacturing efficiency and success of die casting.

 

1. Material Selection:

Choosing the right material is crucial in die casting design. Aluminum, zinc, and magnesium are commonly used due to their excellent castability, mechanical properties, and cost-effectiveness. Understanding the material’s behavior during the die casting process is necessary to determine its suitability for the intended application.

 

2. Draft Angles:

Including draft angles in the design is essential to facilitate the removal of the die-cast part from the mold. Draft angles ensure a smooth ejection without causing any damage to the part or the mold. Generally, a minimum draft angle of 1 to 2 degrees per side is recommended, depending on the part’s complexity.

 

3. Wall Thickness:

Maintaining uniform wall thickness is critical to avoid issues such as shrinkage, porosity, and warpage. Thick sections require longer solidification times and can result in defects. Conversely, thin sections may solidify too quickly, leading to insufficient filling and compromised part integrity. Designers should aim for consistent wall thickness, typically between 2mm to 6mm, to achieve optimal die casting results.

 

4. Fillets and Ribs:

Incorporating fillets and ribs in the design can enhance the part’s structural integrity and reduce stress concentration. Fillets should be designed with a minimum radius equal to or greater than the wall thickness to prevent stress concentration. Ribs, on the other hand, can provide additional strength while minimizing material usage, thus reducing costs.

 

5. Undercuts and Cores:

To avoid complex and costly secondary machining operations, it is advisable to limit the number of undercuts in the die casting design. Undercuts make it challenging to remove the part from the mold and may require additional slides or cores. Minimizing undercuts simplifies the design and improves the overall manufacturing efficiency.

 

6. Gate and Runner Design:

The gate and runner system plays a crucial role in ensuring proper flow of molten metal into the mold cavity. The design should allow for a smooth and uniform filling to minimize turbulence, gas entrapment, and porosity. A well-designed gate and runner system also promotes optimal cooling and helps prevent premature solidification of the molten metal.

 

 

 

 

7. Parting Line Placement:

The parting line separates the two halves of the mold and determines the location where the two halves meet. Optimal parting line placement is vital to minimize the appearance of parting line flash, which is excess material observed along the parting line. Proper parting line placement also ensures consistent wall thickness and avoids critical features falling on the parting line.

 

Conclusion:

Die casting design guidelines are essential to ensure the successful and efficient manufacturing of high-quality metal parts. By considering parameters such as material selection, draft angles, wall thickness, fillets, and ribs, designers can optimize the die casting process. Additionally, careful consideration of undercuts, gate and runner design, and parting line placement can further enhance manufacturing efficiency and reduce costs. Adhering to these guidelines will result in products with superior quality, dimensional accuracy, and surface finish, meeting the desired specifications and customer expectations.

ข่าวล่าสุด
Why are car companies rushing to use this material?
Why are car companies rushing to use this material?
In recent years, a new material with the rise of new energy vehicles has attracted wide attention, that is - magnesium alloy. Automotive lightweight and intelligent technology has become a new trend in the global automotive industry. In recent years, with the pressure and development trend of global energy conservation...
Aluminum Casting Molds: A Guide to Manufacturing and Applications
Aluminum Casting Molds: A Guide to Manufacturing and Applic…
Introduction: Aluminum casting molds are an essential component in the manufacturing process of various aluminum products. They play a crucial role in shaping molten aluminum into desired forms and ensuring the quality and precision of the final products. This guide aims to provide an overview of aluminum casting molds, including...
China Cast Aluminum vs. Aluminum: A Comparative Analysis
China Cast Aluminum vs. Aluminum: A Comparative Analysis
Aluminum is a widely used metal in various industries due to its unique properties and versatility. It offers a combination of strength, lightweight, and corrosion resistance, making it an ideal choice for many applications. However, there are different types of aluminum available, including cast aluminum and pure aluminum, each with...
The Process and Advantages of Die Casting
The Process and Advantages of Die Casting
Die casting is a method of manufacturing that involves the use of a die, or mold, to shape molten metal into a specific form. This process has numerous advantages over other methods of metalworking, including precision, cost-effectiveness, and the ability to produce complex shapes and designs. In this article, we...
Prototype Manufacturing: Turning Ideas into Reality
Prototype Manufacturing: Turning Ideas into Reality
Prototype manufacturing plays a crucial role in turning ideas into reality. It is the process of creating a physical model or sample of a product to test its functionality, design, and manufacturing feasibility. This article will explore the importance of prototype manufacturing, its benefits, and the various methods used in...
Designing the Perfect Aluminum Die Casting Mold: Tips and Considerations
Designing the Perfect Aluminum Die Casting Mold: Tips and C…
Aluminum die casting is a popular manufacturing process that involves the use of a mold to produce identical parts or products in large quantities. The process involves injecting molten aluminum into a mold cavity, which then solidifies and is ejected from the mold to produce a finished product. The quality...
Zhongmei takes you to understand china foundry manufacturer
Zhongmei takes you to understand china foundry manufacturer
Foundries are responsible for our current standard of living and industrial development, yet most of us know very little about it. what is casting casting definition Simply put, a foundry is a factory that produces castings by melting metal, pouring the liquid metal into a mold, and then solidifying it....
Aluminum Alloy Die Casting: A Guide to Manufacturing Process
Aluminum Alloy Die Casting: A Guide to Manufacturing Process
Aluminum alloy die casting is a process that involves the use of molten aluminum to create intricate and detailed parts. This process is widely used in the automotive, aerospace, and electronics industries, among others, due to its ability to produce high-quality parts with excellent dimensional accuracy and surface finish. In...