• แม่พิมพ์หล่อ tel0086-750-5616188
  • 13392089688+86 13392089688
  • sales@zhongmei-tech.comsales@zhongmei-tech.com
nbanner
ข่าวบริษัท
 

How to Optimize Die Casting Design for Improved Performance?

    Date: 2023-7-13 Author:admin  

Introduction

 

Die casting is a widely used manufacturing process for producing high-quality metal parts with complex shapes and tight tolerances. It involves injecting molten metal into a die cavity under high pressure, followed by rapid cooling to solidify the metal and produce the desired part. However, to achieve optimal results, careful design considerations are essential. This article presents guidelines for die casting design, focusing on optimizing the manufacturing process.

 

Design Considerations

 

1. Material Selection

 

The choice of material is crucial in die casting design. Aluminum, zinc, and magnesium alloys are commonly used due to their excellent flowability, high strength-to-weight ratio, and good corrosion resistance. Each material has its own unique properties, and selecting the right one depends on factors such as the desired part characteristics, operating environment, and cost considerations.

 

2. Wall Thickness

 

Maintaining uniform wall thickness is important to ensure proper filling of the die cavity and minimize the risk of defects, such as porosity or surface cracking. Ideally, the wall thickness should be as uniform as possible, avoiding sudden changes or abrupt transitions. In general, a wall thickness of 2-4mm is recommended for aluminum die casting.

 

3. Draft Angles

 

Draft angles are necessary to facilitate the ejection of the part from the die cavity. Without draft angles, the part may stick to the die, resulting in production delays and potential damage to both the part and the die. A draft angle of 1-3 degrees on vertical surfaces and 3-5 degrees on horizontal surfaces is typically sufficient.

 

4. Fillets and Radii

 

Sharp corners should be avoided in die casting design due to the potential for stress concentration and increased porosity. Incorporating fillets and radii helps distribute stresses more evenly, improving the part’s strength and reducing the risk of defects. Fillets with a minimum radius of 1-2mm are recommended.

 

5. Undercuts and Side Actions

 

Undercuts are features that prevent the straightforward ejection of the part from the die. While undercuts can be challenging to incorporate in die casting, the use of side actions or slides can help achieve the desired shape. However, additional complexity may increase production costs, so careful evaluation of the design’s feasibility is necessary.

 

6. Parting Lines

 

The parting line is the line where the two halves of the die meet. It is important to choose a parting line location that minimizes the impact on the part’s appearance and functionality. Ideally, the parting line should be positioned where it is less noticeable and does not intersect critical features or surfaces.

 

 

 

 

 

7. Gates and Runners

 

Gates and runners are essential components of the die casting process, as they control the flow of molten metal into the die cavity. Proper gate and runner design ensures uniform filling and minimizes the risk of defects. The gate size, shape, and location should be carefully considered to achieve optimal flow and minimize turbulence.

 

8. Ejector Pins

 

Ejector pins are used to push the solidified part out of the die cavity after each cycle. Their size, number, and placement should be carefully determined to ensure the part’s easy and reliable ejection without causing damage. Additionally, consideration should be given to the potential for ejector pin marks on visible surfaces.

 

Conclusion

 

Optimizing the die casting design is crucial for achieving high-quality parts, reducing production costs, and maximizing manufacturing efficiency. By considering material selection, wall thickness, draft angles, fillets and radii, undercuts and side actions, parting lines, gates and runners, and ejector pin placement, designers can create robust and manufacturable die cast parts. Following these guidelines will lead to improved product performance, reduced part defects, and overall process optimization in the die casting industry.

ข่าวล่าสุด
The Importance of High-Quality Die Casting Molds
The Importance of High-Quality Die Casting Molds
Die casting is a popular manufacturing method used to produce high-quality metal components. It involves the use of a die casting mold, which is crucial to the success of the process. High-quality die casting molds are essential to achieving the desired level of precision, accuracy, and consistency in the final...
Customized foundry products high precision die-casting steering wheel for automotive,less welding points more durable
Customized foundry products high precision die-casting stee…
Die casting is a metal casting process whose main function is to inject molten metal liquid into the mold, and then use the pressure of the mold to shape the metal. The Customized foundry products high precision die-casting steering wheel for automotive also uses this technical condition to inject the...
CNC Machining Service: Precision Manufacturing Solutions
CNC Machining Service: Precision Manufacturing Solutions
CNC (Computer Numerical Control) machining is a process used to produce complex parts or components with high precision and accuracy. This manufacturing process uses automated machines and computer programs to control the movement and operation of cutting tools. CNC machines are widely used in various industries, including aerospace, automotive, medical,...
Premium Quality High Pressure Die Casting Products: Ensuring Precision and Durability
Premium Quality High Pressure Die Casting Products: Ensurin…
In the field of manufacturing, the quality of the products is of utmost importance. High pressure die casting is a manufacturing process that is widely used in the production of various types of products. This process involves the injection of molten metal at high pressure into a mold cavity to...
Aluminum Machining: Unlocking the Potential of this Versatile Metal
Aluminum Machining: Unlocking the Potential of this Versati…
Aluminum is a lightweight and versatile metal that is widely used in various industries due to its excellent properties. It is known for its high strength-to-weight ratio, corrosion resistance, and electrical conductivity. In recent years, advancements in machining techniques have allowed manufacturers to unlock the full potential of aluminum, making...
Aerospace Casting: Revolutionizing the Aviation Industry with Precision Engineering
Aerospace Casting: Revolutionizing the Aviation Industry wi…
The aviation industry has undergone remarkable advancements over the years, with one of the key factors driving its progress being aerospace casting. This precision engineering technique has revolutionized the manufacturing of aircraft components, leading to enhanced performance, increased fuel efficiency, and improved safety standards. In this article, we will explore...
Squeeze Casting: An Advanced Metal forming Technique
Squeeze Casting: An Advanced Metal forming Technique
In the field of manufacturing, the advancement of metal forming techniques has been crucial in achieving high-quality products with enhanced mechanical properties. One such technique that has gained significant attention is squeeze casting. This process combines the advantages of both casting and forging, resulting in improved material properties and reduced...
Introduction to Die Casting: The Process and Applications
Introduction to Die Casting: The Process and Applications
Die casting is a popular manufacturing process that involves the production of metal parts by forcing molten metal into a die or mold under high pressure. This process offers several advantages, such as cost-effectiveness, fast production rates, and the ability to create complex shapes with high precision. Die casting finds...