• ダイカスト金型電話0086-750-5616188
  • 13392089688+86 13392089688
  • sales@zhongmei-tech.comsales@zhongmei-tech.com
nbanner
会社のニュース
 

Designing for Success: A Comprehensive Guide to Die Casting Design

    Date: 2023-7-15 Author:admin  

序章:

Die casting is a widely used manufacturing process that involves injecting molten metal into a mold cavity under high pressure. It is known for its ability to produce complex and precise parts with excellent dimensional accuracy and surface finish. However, to ensure successful die casting production, it is important to design the part and mold properly. In this comprehensive guide, we will explore the key considerations and best practices in die casting design.

 

1. Material Selection:

The choice of material is critical in die casting design. Aluminum, zinc, and magnesium are commonly used metals due to their excellent castability, tensile strength, and heat dissipation properties. Factors like part functionality, required mechanical properties, and cost should be considered when selecting the material.

 

2. Part Design:

Designing the part for die casting involves several considerations:

 

a. Wall Thickness: Maintaining uniform wall thickness is crucial to ensure proper filling of molten metal and prevent defects like shrinkage, porosity, and warpage. The recommended range for wall thickness is typically 1-5mm, depending on the part size and geometry.

 

b. Draft Angles: Incorporating draft angles (taper) on vertical surfaces facilitates easy ejection of the part from the mold. A draft angle of 1-3 degrees per side is generally recommended.

 

c. Ribs and Bosses: Reinforcing ribs and bosses can enhance the strength and rigidity of the part without significantly increasing weight. It is important to maintain proper thickness ratios and fillets to avoid stress concentration and shrinkage defects.

 

d. Fillets and Radii: Incorporating fillets and radii at corners reduces stress concentration and improves the flow of molten metal during casting. A minimum fillet radius of 0.5-1mm is recommended.

 

e. Undercuts and Side Actions: Minimizing undercuts and side actions simplifies the mold design and reduces production costs. However, if undercuts are unavoidable, slides or collapsible cores can be incorporated.

 

3. Gate Design:

The gate is the entry point for molten metal into the mold cavity. Proper gate design is essential for ensuring smooth and uniform filling of the part. Factors like gate location, size, and shape should be taken into account.

 

a. Gate Location: Placing the gate at the thickest section of the part helps to minimize defects like porosity and cold shuts. It is also important to consider the direction of material flow to avoid undesirable turbulence.

 

b. Gate Size and Shape: The gate size and shape should be carefully designed to achieve optimal flow and prevent premature solidification. A gate cross-sectional area of 50-70% of the thinnest section of the part is generally recommended.

 

4. Mold Design:

The mold plays a crucial role in die casting. It should be designed to facilitate proper filling of molten metal, efficient cooling, and easy ejection of the part. Key considerations in mold design include:

 

a. Parting Line: Determining the parting line where the mold separates is important for proper ejection and minimal flash formation.

 

b. Cooling System: Strategically placed cooling channels help dissipate heat and solidify the part properly, reducing cycle time and improving dimensional stability.

 

 

c. Venting: Adequate venting ensures the escape of gases during metal injection, preventing defects like gas porosity and incomplete casting fill.

 

d. Ejector Pins: Properly positioned ejector pins are crucial for easy and efficient ejection of the part from the mold.

 

Conclusion:

Designing for success in die casting requires careful consideration of material selection, part design, gate design, and mold design. By following the best practices outlined in this comprehensive guide, manufacturers can ensure the production of high-quality die-cast parts with minimal defects and optimal performance.

最新ニュース
Prototype Manufacturing: Turning Ideas into Reality
Prototype Manufacturing: Turning Ideas into Reality
Prototype manufacturing plays a crucial role in turning ideas into reality. It is the process of creating a physical model or sample of a product to test its functionality, design, and manufacturing feasibility. This article will explore the importance of prototype manufacturing, its benefits, and the various methods used in...
China Aluminum Machining wholesale: A Guide to Precision Manufacturing
China Aluminum Machining wholesale: A Guide to Precision Ma…
Introduction Aluminum is a versatile and widely used metal in various industries due to its lightweight, corrosion resistance, and excellent thermal conductivity properties. As a result, precision machining of aluminum has become a crucial process in the manufacturing industry. This guide aims to provide an overview of aluminum machining, including...
China CNC machining custom thixotropic parts UAV components use quality to interpret strength
China CNC machining custom thixotropic parts UAV components…
For products, quality is life and the basis for ensuring that products are well received by consumers in the process of sales and use. Therefore, no matter which industry you are in, everyone has very high requirements for product quality. With the continuous development of manufacturing technology. Many products have...
CNC Machining Service: Precision Manufacturing at Your Fingertips
CNC Machining Service: Precision Manufacturing at Your Fing…
CNC machining is a process that involves the use of computer-controlled tools to create precise parts and components. This technology has revolutionized the manufacturing industry by enabling manufacturers to produce highly accurate and repeatable parts at a much faster rate than traditional machining techniques.   At its core, CNC machining...
Aluminum Alloy Die Casting: The Efficient Way to Create Precision Parts
Aluminum Alloy Die Casting: The Efficient Way to Create Pre…
Aluminum alloy die casting is a highly efficient manufacturing process that is used to create high-quality, precision parts with excellent dimensional accuracy and surface finish. This process involves injecting molten aluminum alloy into a steel mold or die using high pressure and high speed. Once the aluminum alloy solidifies, the...
家電および電子産業におけるマグネシウム合金製品の応用
Application of magnesium alloy products in home appliances …
自動車産業におけるマグネシウム合金の需要は、マグネシウム合金の製造技術における多くのブレークスルーを促進し、マグネシウム合金を使用するコストは大幅に低下しました。これにより、コンピューター、通信機器、計器、デジタル家電、医療機器など....
Aluminum Alloy Die Casting: The Process and Its Advantages
Aluminum Alloy Die Casting: The Process and Its Advantages
Aluminum alloy die casting is a manufacturing process that involves injecting molten aluminum into a mold cavity under high pressure. The molten aluminum is held under pressure until it solidifies, taking the shape of the mold. This process is used to produce complex and precise parts that have a high...
Precision medical CNC machining for optimal healthcare outcomes
Precision medical CNC machining for optimal healthcare outc…
Precision Medical CNC Machining for Optimal Healthcare Outcomes   In recent years, the use of precision medical CNC machining has become increasingly important in the healthcare industry. This advanced manufacturing technique enables the production of complex medical devices with unparalleled accuracy, reliability and consistency. With the help of CNC machining,...