• ダイカスト金型電話0086-750-5616188
  • 13392089688+86 13392089688
  • sales@zhongmei-tech.comsales@zhongmei-tech.com
nbanner
業界情報
 

マグネシウムは、すべてのダイカスト金属の軽量チャンピオンです

    Date: 2021-8-17 Author:admin  

If your project requires a lightweight die casting component with an excellent strength-to-weight ratio, magnesium die casting is the logical option. Die casts magnesium alloy AZ91D, a high-purity alloy which offers good corrosion resistance for your magnesium parts, as well as the following benefits:

  • Longer tool life
  • Easiest alloy to machine
  • Good thermal and electrical conductivity
  • Excellent for thin-wall, complex parts
  • Excellent noise and vibration dampening properties
  • Provides excellent EMI & RFI shielding
  • Good finishing characteristics
  • Light weight (75% lighter than steel, 33% lighter than aluminum) with high strength
  • Magnesium parts scrap material is 100% recyclable

What is Magnesium?

Magnesium is a base material for numerous alloys. AZ91D is the most common magnesium alloy for die casting. It offers excellent castability and toughness, and is an ideal material for light weight, highly durable parts.

The alloy specification of three major magnesium alloys AM50A, AM60B, and AZ91D.

Why Choose Magnesium for your Die Casting Project?

Compared to steel, magnesium is 75% lighter with no significant loss of strength. It is a far better material for complex, thin-walled, net shape or near-net shape castings and offers greater dimensional stability. Magnesium castings can meet tight tolerances that would be difficult or impossible to achieve with steel. Tooling costs can be lower for magnesium castings, as multiple parts can be easily consolidated into a single component. This also improves component rigidity and reduces welding and assembly costs.

Compared to aluminum, magnesium is 33% lighter, with similar or improved mechanical properties, and machines easier. Magnesium provides greater corrosion resistance, and is better suited to large, thin-wall, net shape complex parts.

Magnesium Die Casting Primary Benefit of Mg Secondary Benefit of Mg
vs. Steel Weldment 75% Lighter Less Expensive
vs. Aluminium Die Casting 33% Lighter Longer Tool Life
vs. Plastic Molding Stronger, stiffer Environmentally Stable

Magnesium is stronger and stiffer than even the most advanced engineered plastics. It also provides greater wear resistance, higher temperature resistance, and better energy absorption/impact resistance characteristics.

The application of Magnesium

The applications for magnesium are wide ranging. Below are some areas we commonly see magnesium metal used in, for more information, please visit the International Magnesium Association (IMA) website.

 

AUTOMOTIVE APPLICATION:

In the 1920s magnesium began to make an appearance in the automotive industry. The lightweight metal was initially used in racing cars to add to their competitive edge. About a decade later, magnesium was widely used in commercial vehicles such as the Volkswagen Beetle, which contained about 20kg (44.09lbs) of the material. The interest in magnesium use for automotive applications has increased over the past ten years in response to increasing environmental and legislative influences. Nowadays, fuel efficiency, increased performance, and sustainability are top-of-mind issues for automotive producers.

The use of magnesium in vehicles can, and does, lower overall weight and improve each of these conditions. Many large automotive companies have already replaced steel and aluminum with magnesium in various parts of their products. Audi, DaimlerChrysler (Mercedes-Benz), Ford, Jaguar, Fiat and Kia Motors Corporation are just a few of these companies. Magnesium is currently being used in gearbox, steering column and driver’s air bag housings as well as in steering wheels, seat frames and fuel tank covers. The majority of magnesium parts are produced through high pressure diecasting.

To see an interactive demonstrator of where magnesium can be found in cars, visit the International Magnesium Associations website.

ALUMINUM APPLICATION:

One of the alloys that aluminum is alloyed with the most is magnesium. Magnesium offers a range of positive effects. This element can increase the strength and hardness of aluminum while also increasing castability. Manufacturers also turn to magnesium when they need to strengthen aluminum without making the alloy significantly denser. Magnesium and aluminum can also experience an increase of weldability as well as corrosion resistance.

The addition of magnesium to 5xxx series aluminum increases strength through solid solution strengthening and improves their strain hardening ability. These alloys are the highest strength nonheat-treatable aluminum alloys and are, therefore, used extensively for structural applications. The 5xxx series alloys are produced mainly as sheet and plate.

The addition of magnesium and silicon to 6xxx series aluminum produces the compound magnesium-silicide (Mg2Si).  The formation of this compound provides the 6xxx series their heat-treatability. The 6xxx series alloys are easily and economically extruded and common applications for the 6xxx series alloys are handrails, drive shafts, automotive frame sections, bicycle frames, tubular lawn furniture, scaffolding, stiffeners and braces used on trucks, boats and many other structural fabrications.

AEROSPACE APPLICATION:

The aerospace industry has a long history of using magnesium in many applications both civil and military. Magnesium is critical to lowering the weight of air and space craft, as well as to aid in decreasing emissions and increasing fuel efficiency. Magnesium is an ideal material for use in these applications due to limited improvements on aluminum weight reduction, the high cost of fibre metal laminates or carbon fibre composites, and the poor impact, and damage properties of low-density plastics when subjected to extreme temperatures. Magnesium can be found in the thrust reversers for the Boeing 737, 747, 757, and 767 as well as in jet engine fan frames, and aircraft and helicopter transmission casings. Recent changes to the Aircraft Seat Design Standard SAE AS8049C now permit the use of magnesium alloys, meeting specific FAA flammability criteria, in passenger aircraft seat frames. Investigations are underway to allow broader use within the cabin. Due to increasing adoption, the aerospace industry is widely seen as the next growth segment for the magnesium market.

最新ニュース
Accelerating Innovation with Rapid Prototyping Services
Accelerating Innovation with Rapid Prototyping Services
Innovation is the key to success for businesses across industries. With rapid advancements in technology and increasing competition, organizations need to constantly come up with new ideas and solutions to stay ahead. One of the critical aspects of the innovation process is prototyping – the creation of a working model...
Magnesium Thixomolding: The Future of Lightweight and High-Performance Parts
Magnesium Thixomolding: The Future of Lightweight and High-…
Introduction   The automotive, aerospace, and electronics industries are always looking for new ways to enhance the performance of their products while also making them more lightweight. One of the most promising solutions is magnesium thixomolding, a high-pressure die-casting process that enables the production of complex, high-performance parts with exceptional...
Cast Iron vs Aluminum: Which Material Reigns Supreme
Cast Iron vs Aluminum: Which Material Reigns Supreme
When it comes to cookware, two materials that are often compared to each other are cast iron and aluminum. Both have their own unique properties and benefits, but which one is truly the better option? In this article, we’ll take a closer look at the strengths and weaknesses of each...
ダイカスト金型の作成
ダイカスト金型の作成
Creating a die casting mold is an essential process in the manufacturing of many metal parts and products. The die casting process involves injecting molten metal into a mold under high pressure, which solidifies and forms the desired shape. The mold must be designed and constructed to exact specifications, as...
ダイカスト金型の作成
ダイカスト金型の作成
Creating a die casting mold is a complex and intricate process that requires a significant amount of skill and expertise. Die casting is a manufacturing process that involves injecting molten metal into a mold under high pressure. The mold is usually made of steel and is designed to produce a...
ダイカスト金型の作成
ダイカスト金型の作成
ダイカストは、金属部品を高精度かつ高速に製造するために使用される一般的な製造方法です。ダイカスト プロセスでは、高圧下で溶融金属を金型キャビティに注入します。次に、溶融金属を冷却し、凝固させて、所望の形状を形成します。最終回のクオリティ…
中国におけるマグネシウム合金の半凝固鋳造の状況
Situation of semi-solid die casting of magnesium alloys in …
最大のマグネシウム埋蔵量を持つ国として、マグネシウム合金の深加工技術は成熟しつつあります。新エネルギー車市場の発展に伴い、中国のマグネシウム合金産業には次の利点があります。豊富な -- 中国はマグネシウムの埋蔵量と生産量が世界最大であり、...
Precision Medical CNC Machining: Enhancing Quality and Safety in Medical Device Manufacturing
Precision Medical CNC Machining: Enhancing Quality and Safe…
In recent years, the medical device industry has seen a surge in demand for more precise and complex parts. Precision medical CNC machining has emerged as a crucial technology in meeting these demands, enhancing quality and safety in medical device manufacturing.   CNC (Computer Numerical Control) machining involves the use...