• Форма для литья под давлением тел.0086-750-5616188
  • 13392089688+86 13392089688
  • sales@zhongmei-tech.comsales@zhongmei-tech.com
nbanner
Company News
 

Designing for Success in Die Casting: Essential Guidelines for Precision and Quality Production

    Date: 2023-11-7 Author:admin  

Die casting is a widely used manufacturing process to produce complex and precise metal parts. It involves injecting molten metal into a mold cavity under high pressure. To ensure successful die casting production, certain design guidelines need to be followed. In this article, we will explore some essential considerations to keep in mind when designing for die casting.

 

1. Wall Thickness: One of the crucial factors to consider in die casting design is the wall thickness. Maintaining uniform wall thickness throughout the part is essential for achieving high-quality die castings. It is recommended to keep the wall thickness between 1.5mm and 4mm. A uniform wall thickness helps in reducing the chances of defects such as shrinkage, porosity, and warpage.

 

2. Draft Angle: To facilitate the ejection of the part from the mold, draft angles need to be incorporated into the design. Typically, a draft angle of 1-3 degrees is recommended. This allows for smooth ejection and minimizes the risk of damaging the die.

 

3. Ribs and Bosses: Reinforcing ribs and bosses can enhance the structural integrity of the die-cast part. Ribs should be designed with a thickness of 60-70% of the adjoining wall thickness and a height that is at least 1.5 times the thickness. Bosses, which are raised features used for mounting or fastening purposes, should be designed with adequate wall thickness to prevent sink marks and ensure sufficient strength.

 

4. Fillets and Radii: Sharp corners and edges can lead to stress concentration and potential failure points. Incorporating fillets and radii in the design helps distribute stress and increase the strength of the part. It is recommended to have a minimum radius of 0.5mm for interior corners and 1mm for exterior corners.

 

5. Undercuts and Side Actions: Die casting is limited to producing parts with simple shapes and features. Undercuts and side actions can complicate the ejection process and increase the cost of tooling. It is advisable to avoid undercuts or keep them to a minimum. If undercuts are necessary, they should be designed with proper mechanisms and additional side actions.

 

6. Parting Line and Gate Placement: The parting line is the line where the two halves of the die meet. It is important to consider the parting line location to minimize visual defects and facilitate proper filling of molten metal. Gate placement, where the molten metal enters the mold, should be strategically located to ensure uniform filling and reduce turbulence.

 

 

 

 

 

 

7. Surface Finish: Die casting can produce parts with excellent surface finishes. However, it is important to consider the desired finish during the design phase. Additional provisions may be required to achieve the desired texture or smoothness, such as adding texture to the mold or post-processing operations like polishing or plating.

 

8. Material Selection: Material selection is a critical aspect of die casting design. Different materials have varying fluidity, shrinkage rates, and mechanical properties. It is essential to choose the appropriate alloy to meet the functional requirements of the part. Consultation with material experts is recommended to ensure the optimal material selection.

 

By adhering to these design guidelines, designers can optimize the die casting process and achieve high-quality parts with minimal defects. Collaborating closely with experienced die casting manufacturers and tooling experts can further enhance the design for efficient production. Remember, a well-designed die casting not only ensures functional durability but also facilitates cost-effective manufacturing.

Latest News
CNC Machining of Aluminum Parts: Precision and Efficiency
CNC Machining of Aluminum Parts: Precision and Efficiency
CNC machining has revolutionized the manufacturing industry by allowing for increased precision and efficiency in the production of various parts. One of the most commonly used materials in CNC machining is aluminum due to its excellent properties such as high strength, lightweight, and corrosion resistance. In this article, we will...
Creating an Effective Die Casting Mold
Creating an Effective Die Casting Mold
Die casting is a manufacturing process used to produce complex shapes made of metal parts. It is a widely used technique in the production of a variety of metal parts, from small components to large structures. The process involves pouring molten metal into a mold cavity, where it solidifies and...
Common Materials Used in Die Casting
Common Materials Used in Die Casting
Introduction   Die casting is a manufacturing process used to produce metal parts in large quantities. It involves the use of molten metal that is injected into a mold cavity under high pressure. The molten metal solidifies and takes the shape of the mold cavity. Die casting is widely used...
Precision CNC Machining: Delivering Excellence in Engineering
Precision CNC Machining: Delivering Excellence in Engineeri…
Precision CNC machining is a cutting-edge technology that has revolutionized the manufacturing industry. This advanced process involves the use of computer-controlled machines to produce intricate and precise components for a wide range of applications. With its ability to deliver excellence in engineering, precision CNC machining has become an essential part...
Precision CNC Machining: The Key to Flawless and Accurate Manufacturing
Precision CNC Machining: The Key to Flawless and Accurate M…
In today's fast-paced world, precision is everything. Whether it's in the automotive, aerospace, or medical industry, every manufacturer strives for flawless and accurate production. This is where Precision CNC Machining comes into play.   CNC, or Computer Numerical Control, machining is a manufacturing process that utilizes computerized controls and machine...
Aluminum Machining: Crafting Precision with Ease
Aluminum Machining: Crafting Precision with Ease
When it comes to crafting precision parts and components, aluminum machining has emerged as one of the most efficient and versatile techniques. Aluminum, with its lightweight and excellent strength-to-weight ratio, has become a popular choice in various industries, including automotive, aerospace, electronics, and construction. This article will explore the process...
Creating a Die Casting Mold: A Comprehensive Guide
Creating a Die Casting Mold: A Comprehensive Guide
Die casting is a process used to create metal parts by injecting molten metal into a mold under high pressure. This process is commonly used in manufacturing industries to produce complex and precise parts. The quality of the final product depends on the quality of the die casting mold used....
Machined Casting: Unleashing Precision and Efficiency in Manufacturing
Machined Casting: Unleashing Precision and Efficiency in Ma…
Introduction:   Manufacturing processes have come a long way since the Industrial Revolution. Today, technological advancements have revolutionized the manufacturing sector, enabling businesses to produce high-quality products efficiently. One such innovation is machined casting, a process that combines the benefits of casting and machining, offering precision and efficiency in manufacturing....