• Форма для литья под давлением тел.0086-750-5616188
  • 13392089688+86 13392089688
  • sales@zhongmei-tech.comsales@zhongmei-tech.com
nbanner
Company News
 

Die Casting Design Guidelines: Ensuring Optimal Design for Manufacturing

    Date: 2023-8-17 Author:admin  

Introduction:

Die casting is a widely used manufacturing process for producing metal parts with high dimensional accuracy and excellent surface finish. However, to achieve optimal results, it is essential to consider several design guidelines during the die casting process. This article aims to highlight the critical factors that designers should keep in mind to ensure the manufacturing efficiency and success of die casting.

 

1. Material Selection:

Choosing the right material is crucial in die casting design. Aluminum, zinc, and magnesium are commonly used due to their excellent castability, mechanical properties, and cost-effectiveness. Understanding the material’s behavior during the die casting process is necessary to determine its suitability for the intended application.

 

2. Draft Angles:

Including draft angles in the design is essential to facilitate the removal of the die-cast part from the mold. Draft angles ensure a smooth ejection without causing any damage to the part or the mold. Generally, a minimum draft angle of 1 to 2 degrees per side is recommended, depending on the part’s complexity.

 

3. Wall Thickness:

Maintaining uniform wall thickness is critical to avoid issues such as shrinkage, porosity, and warpage. Thick sections require longer solidification times and can result in defects. Conversely, thin sections may solidify too quickly, leading to insufficient filling and compromised part integrity. Designers should aim for consistent wall thickness, typically between 2mm to 6mm, to achieve optimal die casting results.

 

4. Fillets and Ribs:

Incorporating fillets and ribs in the design can enhance the part’s structural integrity and reduce stress concentration. Fillets should be designed with a minimum radius equal to or greater than the wall thickness to prevent stress concentration. Ribs, on the other hand, can provide additional strength while minimizing material usage, thus reducing costs.

 

5. Undercuts and Cores:

To avoid complex and costly secondary machining operations, it is advisable to limit the number of undercuts in the die casting design. Undercuts make it challenging to remove the part from the mold and may require additional slides or cores. Minimizing undercuts simplifies the design and improves the overall manufacturing efficiency.

 

6. Gate and Runner Design:

The gate and runner system plays a crucial role in ensuring proper flow of molten metal into the mold cavity. The design should allow for a smooth and uniform filling to minimize turbulence, gas entrapment, and porosity. A well-designed gate and runner system also promotes optimal cooling and helps prevent premature solidification of the molten metal.

 

 

 

 

7. Parting Line Placement:

The parting line separates the two halves of the mold and determines the location where the two halves meet. Optimal parting line placement is vital to minimize the appearance of parting line flash, which is excess material observed along the parting line. Proper parting line placement also ensures consistent wall thickness and avoids critical features falling on the parting line.

 

Conclusion:

Die casting design guidelines are essential to ensure the successful and efficient manufacturing of high-quality metal parts. By considering parameters such as material selection, draft angles, wall thickness, fillets, and ribs, designers can optimize the die casting process. Additionally, careful consideration of undercuts, gate and runner design, and parting line placement can further enhance manufacturing efficiency and reduce costs. Adhering to these guidelines will result in products with superior quality, dimensional accuracy, and surface finish, meeting the desired specifications and customer expectations.

Latest News
Aluminum Alloy Die Casting: The Ultimate Guide
Aluminum Alloy Die Casting: The Ultimate Guide
Aluminum alloy die casting is a process that involves the production of complex metal parts using a reusable mold. This process is widely used in a variety of industries, including automotive, aerospace, and electronics, due to its ability to produce parts with high accuracy, repeatability, and dimensional stability.   In...
Creating Flawless Die Casting Products with Precision Die Casting Molds
Creating Flawless Die Casting Products with Precision Die C…
Die casting is a widely used manufacturing process in which molten metal is forced into a mold cavity under high pressure. It is known for its ability to produce complex shapes with high accuracy and excellent surface finish. One crucial element in achieving flawless die casting products is the use...
Online production CNC Machining: CNC Machining Service for Precision Parts Production
Online production CNC Machining: CNC Machining Service for …
CNC machining service is a manufacturing process that uses computer numerical control (CNC) technology to produce precision parts. This process involves the use of computer-controlled machines and tools to shape and cut raw materials into various shapes and sizes. The technology behind CNC machining has made it possible to produce...
Precision CNC Machining: Delivering Excellence in Engineering
Precision CNC Machining: Delivering Excellence in Engineeri…
Precision CNC machining is a cutting-edge technology that has revolutionized the manufacturing industry. This advanced process involves the use of computer-controlled machines to produce intricate and precise components for a wide range of applications. With its ability to deliver excellence in engineering, precision CNC machining has become an essential part...
Creating High-Quality Aluminum Casting Molds: A Guide to Efficient Production
Creating High-Quality Aluminum Casting Molds: A Guide to Ef…
Introduction: Aluminum casting molds play a crucial role in the production of high-quality aluminum products. These molds determine the final outcome of the casting process and are essential for achieving the desired product specifications. In this guide, we will explore the key steps and best practices involved in creating high-quality...
Creating a Die Casting Mold: The Key to Efficient Production
Creating a Die Casting Mold: The Key to Efficient Production
Creating a die casting mold is an important step in the manufacturing process, as it is the key to efficient production. Die casting is a process that involves injecting molten metal into a mold, which is then cooled and hardened to create a solid part. This process is used in...
China Squeeze Casting: A Modern Manufacturing Technique for Enhanced Product Quality and Efficiency
China Squeeze Casting: A Modern Manufacturing Technique for…
Introduction: In today's highly competitive manufacturing industry, companies are constantly striving to improve the quality and efficiency of their production processes. One emerging technique that has gained significant attention in recent years is squeeze casting. This innovative manufacturing method combines the advantages of casting and forging to produce high-quality, near-net...
Precision CNC Machining Services
Precision CNC Machining Services
Precision CNC machining services provide an array of manufacturing services to various industries such as aerospace, automotive, defense, medical, and electronics. CNC (Computer Numerical Control) machines use computerized controls to cut, shape, and drill different materials with precision and accuracy. These machines can create complex components with a high level...