• Форма для литья под давлением тел.0086-750-5616188
  • 13392089688+86 13392089688
  • sales@zhongmei-tech.comsales@zhongmei-tech.com
nbanner
Company News
 

Die Casting Design Guidelines: Essential Tips for Successful Manufacturing

    Date: 2023-7-1 Author:admin  

Die casting is a manufacturing process used to produce metal parts by forcing molten metal into a mold cavity under high pressure. It is commonly used for the production of complex and intricate parts with high accuracy and surface finish. To ensure successful die casting manufacturing, it is crucial to follow certain design guidelines. In this article, we will discuss some essential tips for die casting design.

 

1. Part Design Considerations:

When designing a part for die casting, it is important to consider certain factors to optimize the manufacturing process. First, the part should have uniform wall thickness to ensure proper flow of molten metal and avoid defects like porosity. Sharp corners and edges should be avoided as they can result in stress concentration and increase the likelihood of cracks. Additionally, the part should have proper draft angles to facilitate easy ejection from the mold.

 

2. Gate Design:

The gate is the channel through which molten metal enters the mold cavity. It is essential to design the gate properly for successful die casting. The gate should be placed in a location that allows for even flow of metal throughout the cavity. It should also be designed with an appropriate size to prevent premature solidification of the metal. A well-designed gate ensures uniform filling of the mold and minimizes the formation of defects like cold shuts.

 

3. Wall Thickness:

Maintaining a consistent wall thickness is critical for die casting. Varying wall thickness can lead to uneven cooling and result in defects like warpage and porosity. It is recommended to keep the wall thickness between 2 to 5 mm for aluminum parts and 3 to 7 mm for zinc parts. Thicker sections should be properly reinforced to prevent distortion during solidification.

 

4. Ribs and Bosses:

Ribs are used to provide additional strength and rigidity to the part, while bosses are used for mounting or joining purposes. When designing ribs and bosses, it is important to maintain a proper thickness to avoid shrinkage and sink marks. Ribs should have a thickness of 60 to 70% of the adjacent wall thickness, and bosses should be designed with a thickness of at least 60% of the wall thickness.

 

5. Fillets and Radii:

Sharp corners and edges should be avoided in die casting design. Instead, fillets and radii should be incorporated to distribute stress evenly and reduce the risk of cracks. The minimum fillet radius should be 1 mm for aluminum parts and 1.5 mm for zinc parts. Large fillet radii should be used at the intersection of walls to prevent stress concentration.

 

6. Draft Angles:

Draft angles are essential for easy ejection of the part from the mold. The recommended draft angle for die casting is 1 to 3 degrees per side, depending on the part geometry and material. Insufficient draft can result in sticking of the part in the mold, while excessive draft can cause flash and dimensional inaccuracies.

 

 

7. Surface Finish:

Die casting can produce parts with excellent surface finish. However, it is important to consider the surface finish requirements during the design phase. If a specific surface finish is required, additional machining or polishing operations may be needed. It is also important to avoid texture or patterns in areas where metal flow is critical to prevent defects like flow lines.

 

In conclusion, successful die casting manufacturing relies on proper design considerations. By following the guidelines mentioned above, designers can optimize the die casting process and ensure the production of high-quality parts. Consistent wall thickness, proper gate design, and the use of fillets and radii are some of the key factors to focus on. By paying attention to these essential tips, manufacturers can achieve efficient and cost-effective die casting operations.

Latest News
Magnesium Thixomolding: The Innovative Solution for Lightweight Metal Parts
Magnesium Thixomolding: The Innovative Solution for Lightwe…
Introduction   As industries across the world look for ways to reduce their carbon footprint and increase efficiency, lightweight materials have become increasingly popular for a wide range of applications. One such material is magnesium, a lightweight metal that offers several benefits over traditional materials like steel and aluminum. However,...
High Quality Products Achieved Through High Pressure Die Casting
High Quality Products Achieved Through High Pressure Die Ca…
High pressure die casting is a manufacturing process that involves injecting molten metal into a mold cavity at high pressure. This process has become increasingly popular in recent years due to the high quality and precision of the products it produces. In this article, we will explore the benefits of...
Precision Engineering for Medical Devices: The Advantages of CNC Machining
Precision Engineering for Medical Devices: The Advantages o…
In recent years, there has been a rapid advancement in the field of precision engineering for medical devices. With the increasing demand for high-quality and reliable medical devices, manufacturers are turning to advanced machining techniques to meet these requirements. One such technique that has revolutionized the medical device industry is...
“Aluminum Conversion Coating: Enhancing Surface Properties for Improved Performance”
“Aluminum Conversion Coating: Enhancing Surface Prope…
Aluminum Conversion Coating: Enhancing Surface Properties for Improved PerformanceIntroduction:Aluminum is a versatile metal that is widely used in various industries due to its lightweight, corrosion-resistant, and high-strength properties. However, aluminum surfaces are prone to oxidation, which can affect their performance and durability. To mitigate this issue, aluminum conversion coatings are...
Advancements in Machined Castings: Precision Engineering for Enhanced Performance
Advancements in Machined Castings: Precision Engineering fo…
Machined castings have been an integral part of modern engineering for several decades. In fact, they have been used to manufacture a wide range of products, from simple components to complex machines, used in industries such as aerospace, automotive, and medical equipment manufacturing. Machined castings are preferred over other manufacturing...
Creating Superior Aluminum Die Cast Mold for Optimum Performance
Creating Superior Aluminum Die Cast Mold for Optimum Perfor…
Introduction Aluminum die casting is a widely used manufacturing process that involves injecting molten aluminum into a mold cavity under high pressure. The mold used in this process plays a crucial role in ensuring the quality and performance of the final product. In this article, we will explore the key...
Casting CNC Machining: Precision and Efficiency in Manufacturing
Casting CNC Machining: Precision and Efficiency in Manufact…
CNC machining is a manufacturing process that involves the use of computer-controlled machines to create complex parts and components. One of the most popular methods of CNC machining is casting. Casting CNC machining is a process that combines the precision of CNC machining with the efficiency of casting to produce...
Magnesium Casting: Unleashing the Power of This Lightweight Metal
Magnesium Casting: Unleashing the Power of This Lightweight…
Magnesium, a lightweight metal known for its high strength-to-weight ratio and excellent corrosion resistance, has garnered significant attention in recent years. Its unique properties make it an ideal choice for a wide range of applications, from automotive and aerospace industries to electronics and medical devices. In this article, we will...