• Форма для литья под давлением тел.0086-750-5616188
  • 13392089688+86 13392089688
  • sales@zhongmei-tech.comsales@zhongmei-tech.com
nbanner
Company News
 

The development of magnesium alloy

    Date: 2023-2-24 Author:admin  

Magnesium is one of the most abundant elements in the earth’s crust, but its industrial use has been limited due to its highly reactive nature and difficulty in processing. However, the development of magnesium alloys has made it possible to use this lightweight and strong metal in various applications, including aerospace, automotive, and consumer electronics. In this article, we will explore the development history of magnesium alloy.

 

Early Development

The first attempts to produce magnesium alloys can be traced back to the early 20th century. In 1908, German scientist Alfred Wilm discovered that the addition of aluminum to magnesium could improve its mechanical properties. In 1923, the first magnesium-aluminum alloy was patented in Germany, which became known as the AZ alloy series.

 

World War II

The development of magnesium alloys accelerated during World War II, as the demand for lightweight and high-strength materials for aircraft and other military equipment increased. The United States, Japan, and Germany were the main producers of magnesium alloys during this period. The US Army and Navy also conducted extensive research on the properties and processing of magnesium alloys, leading to significant advancements in their application.

 

Post-War Period

After World War II, the development of magnesium alloys continued, and their use expanded into new industries, including automotive, consumer electronics, and medical devices. In the 1950s, the development of the AE alloy series, which contained rare earth elements such as cerium and neodymium, improved the high-temperature properties of magnesium alloys and led to their use in aerospace applications.

 

 

Modern Development

In recent years, the development of magnesium alloys has focused on improving their corrosion resistance, thermal stability, and processing capabilities. The use of new alloying elements such as zirconium, manganese, and lithium has led to the development of high-performance magnesium alloys with improved mechanical properties and corrosion resistance.

 

The Future of Magnesium Alloy Development

The development of magnesium alloys is ongoing, and researchers are exploring new applications and processing methods. One area of focus is the development of magnesium alloys for use in biodegradable implants, which can be safely absorbed by the body after their useful life is over. The use of magnesium alloys in additive manufacturing, or 3D printing, is also an area of research, which could lead to the production of complex and lightweight parts.

In conclusion, the development of magnesium alloys has been a long and ongoing process, driven by the demand for lightweight and high-strength materials in various industries. While there have been challenges along the way, magnesium alloys continue to be an important material for many applications and hold promise for future advancements.

Latest News
High-Quality Die Casting Products for Your Industrial Needs
High-Quality Die Casting Products for Your Industrial Needs
Die casting is a manufacturing process that involves the use of molten metal that is forced into molds under high pressure. This process is used to produce a wide range of parts and components that are used in various industries, including automotive, aerospace, medical, and electronics. Die casting is an...
Exploring the Versatility of Aluminum Casting Molds: Unleashing the Potential in English
Exploring the Versatility of Aluminum Casting Molds: Unleas…
Introduction: Aluminum casting molds have emerged as a versatile tool in various industries, enabling the production of complex and intricately designed products. This article aims to delve into the potential applications and benefits of aluminum casting molds while highlighting their significance in enhancing efficiency and cost-effectiveness in manufacturing processes.  ...
The development of magnesium alloy
The development of magnesium alloy
Magnesium is one of the most abundant elements in the earth's crust, but its industrial use has been limited due to its highly reactive nature and difficulty in processing. However, the development of magnesium alloys has made it possible to use this lightweight and strong metal in various applications, including...
Advantages brought by Chinese die casting service manufacturers
Advantages brought by Chinese die casting service manufactu…
What is Aluminum Die Casting Aluminum die-cast alloys are lightweight and also offer high dimensional safety for complex component geometries and thin walls. Aluminum has good rust resistance and mechanical properties, residential properties and high thermal and electrical conductivity, making it a die-cast alloy. Low density aluminum steel is very...
Designing a High-Quality Die Casting Mold for Precision Manufacturing
Designing a High-Quality Die Casting Mold for Precision Man…
When it comes to die casting, the quality of the mold is crucial to achieving precision manufacturing. The mold is responsible for determining the shape, quality, and accuracy of the final product. Therefore, it is essential to design a high-quality die casting mold that can produce consistent and reliable results....
How about magnesium alloy die-casting thixotropic helmets
How about magnesium alloy die-casting thixotropic helmets
A helmet is a tool to protect the head. From 2020, the traffic law stipulates that riding a motorcycle without a helmet will be punished. Usually, people resist wearing helmets because they are heavy. Manufacturers are now applying magnesium alloys to make helmets lighter. The magnesium alloy die-casting thixotropic helmet...
Die Casting guide: The Process, Materials, and Applications
Die Casting guide: The Process, Materials, and Applications
Die casting is a manufacturing process that involves forcing molten metal under high pressure into a mold cavity. The molten metal solidifies quickly to form a part or component with a high level of accuracy and detail. This process is commonly used in the production of a wide range of...
Exploring the Power of Prototyping in the English Language
Exploring the Power of Prototyping in the English Language
In today's fast-paced and ever-evolving world, effective communication is key. The English language, as one of the most widely spoken languages globally, plays a significant role in facilitating communication across cultures and borders. To enhance our ability to communicate effectively, it is essential to explore and harness the power of...