• Kalup za tlačno litje tel0086-750-5616188
  • 13392089688+86 13392089688
  • sales@zhongmei-tech.comsales@zhongmei-tech.com
nbanner
Novice podjetja
 

Die Casting Design Guidelines: Ensuring Optimal Design for Manufacturing

    Date: 2023-8-17 Author:admin  

Introduction:

Die casting is a widely used manufacturing process for producing metal parts with high dimensional accuracy and excellent surface finish. However, to achieve optimal results, it is essential to consider several design guidelines during the die casting process. This article aims to highlight the critical factors that designers should keep in mind to ensure the manufacturing efficiency and success of die casting.

 

1. Material Selection:

Choosing the right material is crucial in die casting design. Aluminum, zinc, and magnesium are commonly used due to their excellent castability, mechanical properties, and cost-effectiveness. Understanding the material’s behavior during the die casting process is necessary to determine its suitability for the intended application.

 

2. Draft Angles:

Including draft angles in the design is essential to facilitate the removal of the die-cast part from the mold. Draft angles ensure a smooth ejection without causing any damage to the part or the mold. Generally, a minimum draft angle of 1 to 2 degrees per side is recommended, depending on the part’s complexity.

 

3. Wall Thickness:

Maintaining uniform wall thickness is critical to avoid issues such as shrinkage, porosity, and warpage. Thick sections require longer solidification times and can result in defects. Conversely, thin sections may solidify too quickly, leading to insufficient filling and compromised part integrity. Designers should aim for consistent wall thickness, typically between 2mm to 6mm, to achieve optimal die casting results.

 

4. Fillets and Ribs:

Incorporating fillets and ribs in the design can enhance the part’s structural integrity and reduce stress concentration. Fillets should be designed with a minimum radius equal to or greater than the wall thickness to prevent stress concentration. Ribs, on the other hand, can provide additional strength while minimizing material usage, thus reducing costs.

 

5. Undercuts and Cores:

To avoid complex and costly secondary machining operations, it is advisable to limit the number of undercuts in the die casting design. Undercuts make it challenging to remove the part from the mold and may require additional slides or cores. Minimizing undercuts simplifies the design and improves the overall manufacturing efficiency.

 

6. Gate and Runner Design:

The gate and runner system plays a crucial role in ensuring proper flow of molten metal into the mold cavity. The design should allow for a smooth and uniform filling to minimize turbulence, gas entrapment, and porosity. A well-designed gate and runner system also promotes optimal cooling and helps prevent premature solidification of the molten metal.

 

 

 

 

7. Parting Line Placement:

The parting line separates the two halves of the mold and determines the location where the two halves meet. Optimal parting line placement is vital to minimize the appearance of parting line flash, which is excess material observed along the parting line. Proper parting line placement also ensures consistent wall thickness and avoids critical features falling on the parting line.

 

Conclusion:

Die casting design guidelines are essential to ensure the successful and efficient manufacturing of high-quality metal parts. By considering parameters such as material selection, draft angles, wall thickness, fillets, and ribs, designers can optimize the die casting process. Additionally, careful consideration of undercuts, gate and runner design, and parting line placement can further enhance manufacturing efficiency and reduce costs. Adhering to these guidelines will result in products with superior quality, dimensional accuracy, and surface finish, meeting the desired specifications and customer expectations.

Zadnje novice
China Squeeze Casting: A Highly Efficient Metal Casting Technique
China Squeeze Casting: A Highly Efficient Metal Casting Tec…
Introduction   Metal casting is a widely used manufacturing process that involves pouring molten metal into a mold to obtain a desired shape. It is a critical step in the production of various components used in industries such as automotive, aerospace, and machinery. Over the years, numerous casting techniques have...
Okvir iz magnezijeve zlitine za dele električnega kolesa postane lažji
Okvir iz magnezijeve zlitine za dele električnega kolesa postane lažji ...
Magnezijeve zlitine se zdaj vedno pogosteje uporabljajo v delih e-koles in z zamenjavo aluminijevih zlitin z magnezijevimi zlitinami je mogoče doseči znatne prihranke teže in s tem izboljšati funkcionalnost kolesa. Ohišja motorjev iz magnezija se vse pogosteje uporabljajo pri proizvodnji e-koles. Z zamenjavo aluminija z magnezijem lahko znatno prihranimo težo ...
Po meri izdelani livarski deli s CNC obdelovalnim nosilcem za armaturno ploščo, nova izbira v dobi avtomobilske lahke teže
Po meri izdelani livarski deli s CNC strojno avtomatsko armaturno ploščo…
Digitalna precizna obdelava je ena izmed pogosto uporabljenih metod obdelave na trgu. Z računalniškim nadzorom je lahko natančnost delovanja in nadzora podatkov večja, tako da lahko izdelani deli ustrezajo trenutnim tehničnim zahtevam. Zato imajo po meri izdelani livarski deli s CNC obdelovalnim nosilcem za avtomatsko armaturno ploščo ...
Precision Medical CNC Machining: Accurate and Reliable Solutions for the Healthcare Industry
Precision Medical CNC Machining: Accurate and Reliable Solu…
In the healthcare industry, precision is key. Every device, implant, and instrument must be made to exact specifications to ensure the safety and health of patients. This is where Precision Medical CNC Machining comes in. With its high level of accuracy and reliability, CNC machining is becoming an increasingly popular...
Exploring the World of Machined Casting: A Guide to Precision Manufacturing
Exploring the World of Machined Casting: A Guide to Precisi…
Introduction   In the realm of manufacturing, precision plays a vital role in ensuring the production of high-quality components and products. One such technique that embodies precision manufacturing is machined casting. This guide aims to provide an in-depth understanding of machined casting, its process, applications, advantages, and challenges.   Section...
China Cast Aluminum vs. Aluminum: A Comparative Analysis
China Cast Aluminum vs. Aluminum: A Comparative Analysis
Aluminum is a widely used metal in various industries due to its unique properties and versatility. It offers a combination of strength, lightweight, and corrosion resistance, making it an ideal choice for many applications. However, there are different types of aluminum available, including cast aluminum and pure aluminum, each with...
Da bi dosegli avtomobilsko lahkotnost, podjetje Zhongmei Technology proizvaja avtomobilsko ključavnico za vžig iz magnezijeve zlitine in pritegne veliko pozornosti.
Za doseganje avtomobilske lahke teže je Zhongmei Technology comp…
Spet ključavnica za vžig stikala za vžig, je več kot stikalo za prestavljanje, potrebna je možnost manipulacije, ustrezna ključavnica za vžig s ključem se pogosto uporablja za krmiljenje vezja za vžig, vezja instrumentov, elektronskega krmilnega sistema (motor), zagonskega vezja in pomožnega električnega vezja (razen za večino avtomobilskih hupnih tokokrogov, opozorilnih lučk,...
Diverse Die Casting Products: A Comprehensive Range of High-Quality Solutions
Diverse Die Casting Products: A Comprehensive Range of High…
Introduction Die casting is a manufacturing process that involves the production of metal parts by forcing molten metal into a mold under high pressure. It is widely used in various industries, such as automotive, aerospace, electronics, and consumer goods. With advancements in technology and materials, die casting has become an...