• Die casting mold tel0086-750-5616188
  • 13392089688+86 13392089688
  • sales@zhongmei-tech.comsales@zhongmei-tech.com
nbanner
Company News
 

Die Casting Design Guidelines: Essential Tips for Successful Manufacturing

    Date: 2023-7-12 Author:admin  

Die casting is a widely used manufacturing process for producing complex metal parts with high precision and excellent surface finish. It involves injecting molten metal under high pressure into a steel mold, known as a die, and then allowing it to solidify. This article will provide essential design guidelines for successful die casting manufacturing.

 

1. Material Selection:

Choosing the right material is crucial for achieving high-quality die cast parts. Common materials used in die casting include aluminum, zinc, and magnesium alloys. Each material has its own unique properties and characteristics, such as strength, corrosion resistance, and thermal conductivity. It is important to select a material that best suits the specific requirements of the part being manufactured.

 

2. Wall Thickness:

Maintaining uniform wall thickness is essential to prevent defects and ensure proper filling of molten metal during the die casting process. Wall thickness should be designed to be as uniform as possible. Avoid abrupt changes in wall thickness, which can result in uneven cooling and lead to shrinkage, warping, and other quality issues.

 

3. Draft Angle:

Including draft angles in the design is essential for easy ejection of the part from the die. A draft angle is a slight taper given to the vertical walls of the die cavity. It allows for smooth and easy removal of the part after solidification. A draft angle of 1-3 degrees is typically recommended, depending on the part’s complexity and size.

 

4. Ribs and Fillets:

Incorporating ribs and fillets in the design can help improve the strength and rigidity of the die cast part. Ribs add stiffness to thin-walled sections, reducing the risk of deformation or warping. Fillets, on the other hand, help eliminate sharp corners and reduce stress concentration points, leading to improved overall part quality.

 

5. Gates and Runners:

Proper placement of gates and runners is critical to achieve efficient filling and avoid defects like porosity and shrinkage. Gates are the entry points through which molten metal is injected into the die cavity. They should be designed to ensure uniform filling and minimize metal turbulence. Runners are channels that distribute the molten metal from the gate to the different sections of the part. A well-designed gating system can significantly influence the part quality and minimize scrap rates.

 

6. Parting Line and Ejector Pins:

The parting line is the line where the two halves of the die meet. It is important to carefully determine the parting line location to minimize flash and ensure proper alignment of the die halves. Ejector pins are used to push the solidified part out of the die cavity. They should be strategically placed to avoid interference with the part’s critical features and minimize the risk of damage during ejection.

 

7. Surface Finish and Texture:

Die casting can achieve excellent surface finish and texture. Designers should specify the desired surface finish and texture requirements to meet the part

‘s aesthetic and functional needs. Various techniques, such as bead blasting, polishing, or adding texture to the die cavity, can be used to achieve the desired surface appearance.

 

 

 

 

8. Tooling Considerations:

Designing the die with proper tooling considerations is crucial for successful die casting. The die should be designed for ease of manufacturing, assembly, and maintenance. Features like ejector pins, cooling channels, and venting should be appropriately integrated into the die design to ensure efficient production and minimize the risk of defects.

 

In conclusion, following these die casting design guidelines can greatly contribute to successful manufacturing. By carefully considering material selection, wall thickness, draft angles, ribs and fillets, gating system design, parting line, and surface finish requirements, designers can optimize the die casting process and achieve high-quality parts with minimal defects. Additionally, paying attention to tooling considerations can enhance the overall efficiency and longevity of the die.

Latest News
Developing a High-Quality Die Casting Mold: Key Aspects and Techniques
Developing a High-Quality Die Casting Mold: Key Aspects and…
Introduction Die casting is a widely used manufacturing process for producing complex metal parts with high precision and accuracy. A crucial component in this process is the die casting mold, which plays a significant role in determining the quality and characteristics of the final product. In this article, we will...
Why are car companies rushing to use this material?
Why are car companies rushing to use this material?
In recent years, a new material with the rise of new energy vehicles has attracted wide attention, that is - magnesium alloy. Automotive lightweight and intelligent technology has become a new trend in the global automotive industry. In recent years, with the pressure and development trend of global energy conservation...
CNC Machining Service: Precision Manufacturing for Your Parts
CNC Machining Service: Precision Manufacturing for Your Par…
CNC machining service is a precision manufacturing process that involves using computer-controlled machines to create parts and components from various materials. This process is widely used in a variety of industries, including aerospace, automotive, medical, and electronics.   One of the main advantages of CNC machining is its high level...
To achieve automotive lightweight, Zhongmei Technology company produces magnesium alloy automotive ignition lock and get a lot of attention.
To achieve automotive lightweight, Zhongmei Technology comp…
Ignition lock of ignition switch again, it is more than a shift switch, need ability to manipulate, the corresponding key ignition lock is often used to control the ignition circuit, instrument circuit, electronic control system (engine), starting circuit and auxiliary electrical circuit (except for most car horn circuit, warning lights,...
CNC Machining Service: Precision Engineering for Your Needs
CNC Machining Service: Precision Engineering for Your Needs
CNC machining has transformed the manufacturing industry by providing precision engineering solutions for a wide range of needs. From prototyping to mass production, CNC machining service has become an essential part of many industries, including aerospace, automotive, medical, and electronics. This article will explore what CNC machining is, how it...
Alloy vs Aluminum: A Comparison of Metals
Alloy vs Aluminum: A Comparison of Metals
Metals are one of the most commonly used materials in the world, and they are essential for a wide range of applications, including construction, manufacturing, and transportation. Two of the most popular metals used in these applications are alloys and aluminum. While both materials possess excellent properties, there are significant...
Customized foundry products high precision die-casting steering wheel for automotive,less welding points more durable
Customized foundry products high precision die-casting stee…
Die casting is a metal casting process whose main function is to inject molten metal liquid into the mold, and then use the pressure of the mold to shape the metal. The Customized foundry products high precision die-casting steering wheel for automotive also uses this technical condition to inject the...
customized magnesium alloy rigid front fork die cast metal parts for bicycles to make your car more durable
customized magnesium alloy rigid front fork die cast metal …
When manufacturers produce parts, they will set specific parameters, and the parameters of this setting are determined after countless experiments, especially for products such as bicycles, which are assembled from various parts. Yes, the various parts need to be matched, so there are strict requirements for the parameters between the...